B_{e}( d_{t}[x]·t , d_{t}[y]·t , d_{t}[z]·t ) = (-1)·kq·...
... < ((d_{t}[x]·t)^{m}+(-1))/((d_{t}[x]·t)^{n}+(-1)) , ...
... ((d_{t}[y]·t)^{m}+(-1))/((d_{t}[y]·t)^{n}+(-1)) , ...
... ((d_{t}[z]·t)^{m}+(-1))/((d_{t}[z]·t)^{n}+(-1)) >
flux[ B_{e}( d_{t}[x]·t , d_{t}[y]·t , d_{t}[z]·t ) ] = (-1)·kq·(...
... ((d_{t}[x]·t)^{m}+(-1))/(x((d_{t}[x]·t)^{n}+(-1))) + ...
... ((d_{t}[y]·t)^{m}+(-1))/(y((d_{t}[y]·t)^{n}+(-1))) + ...
... ((d_{t}[z]·t)^{m}+(-1))/(z((d_{t}[z]·t)^{n}+(-1)))
... )·xyz
div[ B_{e}( d_{t}[x]·t , d_{t}[y]·t , d_{t}[z]·t ) ] = kq·( ...
... m(d_{t}[x]·t)^{m+(-1)}/((d_{t}[x]·t)^{n}+(-1)) + ...
... m(d_{t}[y]·t)^{m+(-1)}/((d_{t}[y]·t)^{n}+(-1)) + ...
... m(d_{t}[z]·t)^{m+(-1)}/((d_{t}[z]·t)^{n}+(-1)) ...
... )+...
... (-1)( ...
... n(d_{t}[x]·t)^{n+(-1)}((d_{t}[x]·t)^{m}+(-1))/((d_{t}[x]·t)^{n}+(-1))^{2} + ...
... n(d_{t}[y]·t)^{n+(-1)}((d_{t}[y]·t)^{m}+(-1))/((d_{t}[y]·t)^{n}+(-1))^{2} + ...
... n(d_{t}[z]·t)^{n+(-1)}((d_{t}[z]·t)^{m}+(-1))/((d_{t}[z]·t)^{n}+(-1))^{2}
... ) ...
... )
No hay comentarios:
Publicar un comentario