jueves, 16 de enero de 2020

economia: modelo de línea de la ecuación lineal de primer orden

f(x) = e^{(m/x)}
ln( f(x) ) = (m/x)


d_{y}[g(y)] + (-1)·( m/x^{2} )·g(y) = 0


g(y) = e^{(m/x^{2})·y}


(1/ln(e^{(m/x^{2})·(x/m)})) = x


(1/ln(e^{(m/x^{2})·( 1/ln( f(x) ) )})) = x


( 1/ln( g( 1/ln(f(x)) ) ) ) = x


m = 4 botellas & x = 64 cm ==> ( 1/ln( f(64) ) ) = 16€


d_{y}[g(y)] + (-1)·(1/1024)·g(y) = 0


( 1/ln( g(16) ) ) = 64€


m = 3 botellas & x = 30 cm ==> ( 1/ln( f(30) ) ) = 10€


d_{y}[g(y)] + (-1)·(1/300)·g(y) = 0


( 1/ln( g(10) ) ) = 30€

No hay comentarios:

Publicar un comentario