f(x) = e^{(m/x)}
ln( f(x) ) = (m/x)
d_{y}[g(y)] + (-1)·( m/x^{2} )·g(y) = 0
g(y) = e^{(m/x^{2})·y}
(1/ln(e^{(m/x^{2})·(x/m)})) = x
(1/ln(e^{(m/x^{2})·( 1/ln( f(x) ) )})) = x
( 1/ln( g( 1/ln(f(x)) ) ) ) = x
m = 4 botellas & x = 64 cm ==> ( 1/ln( f(64) ) ) = 16€
d_{y}[g(y)] + (-1)·(1/1024)·g(y) = 0
( 1/ln( g(16) ) ) = 64€
m = 3 botellas & x = 30 cm ==> ( 1/ln( f(30) ) ) = 10€
d_{y}[g(y)] + (-1)·(1/300)·g(y) = 0
( 1/ln( g(10) ) ) = 30€
No hay comentarios:
Publicar un comentario