viernes, 17 de enero de 2020

economia: modelo de línea de la ecuación de primer orden de logaritmo no inverso


f(x) = e^{(m/x)}
ln( f(x) ) = (m/x)


d_{z}[h(z)] + (-1)·( x^{2}/m )·h(z) = 0


h(z) = e^{(x^{2}/m)·z}


( ln(e^{(x^{2}/m)·(m/x)}) ) = x


( ln(e^{(x^{2}/m)·ln( f(x) )}) ) = x


( ln( h( ln(f(x)) ) ) ) = x


m = 3 & x = (3/4)·m ==> ln(f(3/4)) = 4€


d_{z}[h(z)] + (-1)·(3/16)·h(z) = 0


ln(h(4) ) = (3/4)€


ln(f(3/4))·ln(h(4) ) = 3€


m = 5 & x = (1/10)·m ==> ln(f(1/10)) = 50€


d_{z}[h(z)] + (-1)·(1/500)·h(z) = 0


ln(h(50) ) = (1/10)€


ln(f(1/10))·ln(h(50) ) = 5€

No hay comentarios:

Publicar un comentario