m·d_{t}[x(t)] = a·( x(t) )^{(1/3)}
m·d_{tt}^{2}[x(t)] = (1/3)·a·( x(t) )^{(-1)(2/3)}·d_{t}[x(t)]
m·d_{tt}^{2}[x(t)] = (1/3)·(a^{2}/m)·( x(t) )^{(-1)(1/3)}
( x(t) )^{(1/3)}·d_{tt}^{2}[x(t)] = (1/3)·(a^{2}/m^{2})
d_{t}[x(t)]·d_{tt}^{2}[x(t)] = (1/3)·(a^{3}/m^{3})
(1/2)·d_{t}[x(t)]^{2} = (1/3)·(a^{3}/m^{3})·t
d_{t}[x(t)] = ( (2/3)·(a^{3}/m^{3}) )^{(1/2)}·t^{(1/2)}
x(t) = ( (2/3)·(a/m) )^{(3/2)}·t^{(3/2)}
d_{tt}^{2}[x(t)] = (1/2)·( (2/3)·(a^{3}/m^{3}) )^{(1/2)}·t^{(-1)(1/2)}
E(t) = ∫ [ (m/2)·( (2/3)·(a^{3}/m^{3}) )^{(1/2)}·t^{(-1)(1/2)}·( (2/3)·(a^{3}/m^{3}) )^{(1/2)}·t^{(1/2)}) ] d[t]
E(t) = ∫ [ (m/2)·( (2/3)·(a^{3}/m^{3}) ) ] d[t]
E(t) = (1/3)·(a^{3}/m^{2})·t
(m/2)·d_{t}[x(t)]^{2} = (1/3)·(a^{3}/m^{2})·t
No hay comentarios:
Publicar un comentario