en serie:
( V_{1}+...(n)...+V_{n} ) = ( R_{1}+...(n)...+R_{n} )·I_{0}
en paral·lel:
( I_{1}+...(n)...+I_{n} ) = ( (1/R_{1})+...(n)...+(1/R_{n}) )·V_{0}
R_{k} = n
V_{k} = k
I_{k} = k
I_{0} = ( (n+1)/(2n) )
V_{0} = ( (n(n+1))/2 )
R_{k} = 1
V_{k} = k
I_{k} = k
I_{0} = ( (n+1)/2 )
V_{0} = ( (n+1)/2 )
R_{k} = n
V_{k} = 1
I_{k} = 1
I_{0} = ( 1/n )
V_{0} = n
R_{k} = 1
V_{k} = 1
I_{k} = 1
I_{0} = 1
V_{0} = 1
No hay comentarios:
Publicar un comentario