miércoles, 1 de enero de 2020
partición de números enteros en base dos-seis
pm+8 = (6+2)+(m+...(p)...+m)
pm+10 = (6+2+2)+(m+...(p)...+m)
pm+12 = (6+2+2+2)+(m+...(p)...+m)
pm+12 = (6+6)+(m+...(p)...+m)
pm+14 = (6+2+2+2+2)+(m+...(p)...+m)
pm+14 = (6+6+2)+(m+...(p)...+m)
pm+16 = (6+2+2+2+2+2)+(m+...(p)...+m)
pm+16 = (6+6+2+2)+(m+...(p)...+m)
pm+18 = (6+2+2+2+2+2+2)+(m+...(p)...+m)
pm+18 = (6+6+2+2+2)+(m+...(p)...+m)
pm+18 = (6+6+6)+(m+...(p)...+m)
P( pm+(6k) ) = ( (6k)/6 )
P( pm+(6k+2) ) = ( ((6k+2)+(-2))/6 )
P( pm+(6k+4) ) = ( ((6k+4)+(-4))/6 )
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario