m·d_{t}[x(t)] = a·( x(t) )^{(1/2)}
m·d_{tt}^{2}[x(t)] = (1/2)·a·( x(t) )^{(-1)(1/2)}·d_{t}[x(t)]
m·d_{tt}^{2}[x(t)] = (1/2)·(a^{2}/m)
d_{tt}^{2}[x(t)] = (1/2)·(a^{2}/m^{2})
d_{t}[x(t)] = (1/2)·(a^{2}/m^{2})·t
x(t) = (1/4)·(a^{2}/m^{2})·t^{2}
E(t) = ∫ [ ( (1/2)·(a^{2}/m) )·( (1/2)·(a^{2}/m^{2})·t ) ] d[t]
E(t) = (1/8)·(a^{4}/m^{3})·t^{2}
(m/2)·d_{t}[x(t)]^{2} = (1/8)·(a^{4}/m^{3})·t^{2}
No hay comentarios:
Publicar un comentario