martes, 21 de octubre de 2025

física-en-ingeniería y mecánica-de-fluidos

Momento de impulsión:

Articulaciones robóticas y de vehículo.

Ley:

Sea m·d_{t}[x]·d = L(t) ==>

Si d[L(t)] = Mv·d[x] ==>

x(t) = re^{(M/m)·(v/d)·t}

Deducción:

L(t) = int[ d[L(t)] ] = int[ Mv·d[x] ] = Mv·int[ d[x] ] = Mvx

m·d_{t}[x]·d = m·d_{t}[ re^{(M/m)·(v/d)·t} ]·d = mr·d_{t}[ e^{(M/m)·(v/d)·t} ]·d = ...

... mre^{(M/m)·(v/d)·t}·(M/m)·(v/d)·d = Mvre^{(M/m)·(v/d)·t} = Mvx

Ley:

Sea m·d_{t}[x]·d = L(t) ==>

Si d[L(t)] = Mgt·d[x] ==>

x(t) = re^{(M/m)·(g/d)·(1/2)·t^{2}}

Deducción:

L(t) = int[ d[L(t)] ] = int[ Mgt·d[x] ] = Mgt·int[ d[x] ] = Mgtx

m·d_{t}[x]·d = m·d_{t}[ re^{(M/m)·(g/d)·(1/2)·t^{2}} ]·d = ...

... mr·d_{t}[ e^{(M/m)·(g/d)·(1/2)·t^{2}} ]·d = ...

... mre^{(M/m)·(g/d)·(1/2)·t^{2}}·(M/m)·(1/d)·gt·d = Mgt·re^{(M/m)·(g/d)·(1/2)·t^{2}} = Mgtx


Ley:

Sea m·d_{t}[x]·d = L(t) ==>

Si d[L(t)] = Mav·2x·d[x] ==>

x(t) = ( (-1)·(M/m)·(v/d)·at )^{(-1)}

Ley:

Sea m·d_{t}[x]·d = L(t) ==>

Si d[L(t)] = Magt·2x·d[x] ==>

x(t) = ( (-1)·(M/m)·(g/d)·a·(1/2)·t^{2} )^{(-1)}


Momento de inercia:

Motores de rotación.

Ley:

Sea I_{c}·(1/2)·d_{t}[w]^{2} = E ==>

Si d[I_{c}] = Mrv·d[t] ==>

w(t) = ( (8/M)·(1/(rv))·E )^{(1/2)}·t^{(1/2)}

Deducción:

I_{c} = int[ d[I_{c}] ] = int[ Mrv·d[t] ] = Mrv·int[ d[t] ] = Mrvt

I_{c}·(1/2)·d_{t}[w]^{2} = Mrvt·(1/2)·d_{t}[ ( (8/M)·(1/(rv))·E )^{(1/2)}·t^{(1/2)} ]^{2} = ...

... Mrvt·(1/2)·( ( (8/M)·(1/(rv))·E )^{(1/2)}·d_{t}[ t^{(1/2)} ] )^{2} = ...

... Mrvt·(1/2)·( (8/M)·(1/(rv))·E )·d_{t}[ t^{(1/2)} ]^{2} = 4Et·d_{t}[ t^{(1/2)} ]^{2} = ...

... 4Et·( (1/2)·(1/t)^{(1/2)} )^{2} = E

Ley:

Sea I_{c}·(1/2)·d_{t}[w]^{2} = E ==>

Si d[I_{c}] = Mrgt·d[t] ==>

w(t) = ( (4/M)·(1/(rg))·E )^{(1/2)}·ln(ut)

Deducción:

I_{c} = int[ d[I_{c}] ] = int[ Mrgt·d[t] ] = Mrg·int[ t·d[t] ] = Mrg·(1/2)·t^{2}

I_{c}·(1/2)·d_{t}[w]^{2} = Mrgt^{2}·(1/4)·d_{t}[ ( (4/M)·(1/(rg))·E )^{(1/2)}·ln(ut) ]^{2} = ...

... Mrgt^{2}·(1/4)·( ( (4/M)·(1/(rg))·E )^{(1/2)}·d_{t}[ ln(ut) ] )^{2} = ...

... Mrgt^{2}·(1/4)·( (4/M)·(1/(rg))·E )·d_{t}[ ln(ut) ]^{2} = Et^{2}·d_{t}[ ln(ut) ]^{2} = ...

... Et^{2}·(1/t)^{2} = E


Fuerzas de amortiguación y de pistones de fluido:

Horizontal:

Ley:

m·d_{tt}^{2}[x] = (-k)·x

x(t) = re^{(k/m)^{(1/2)}·it}

Deducción:

m·d_{tt}^{2}[x] = m·d_{t}[ d_{t}[x] ] = m·d_{t}[ d_{t}[ re^{(k/m)^{(1/2)}·it} ] ] = ...

... m·d_{t}[ r·d_{t}[ e^{(k/m)^{(1/2)}·it} ] ] = m·d_{t}[ re^{(k/m)^{(1/2)}·it}·(k/m)^{(1/2)}·i ] = ...

... mr·(k/m)^{(1/2)}·i·d_{t}[ e^{(k/m)^{(1/2)}·it} ] = ...

... mr·( (k/m)^{(1/2)}·i )^{2} e^{(k/m)^{(1/2)}·it} = ...

... (-k)·re^{(k/m)^{(1/2)}·it} = (-k)·x

Ley

m·d_{tt}^{2}[x] = (-b)·d_{t}[x]

d_{t}[x] = ve^{(-1)·(b/m)·t}

Deducción:

m·d_{tt}^{2}[x] = m·d_{t}[ d_{t}[x] ] = m·d_{t}[ ve^{(-1)·(b/m)·t} ] = ...

... mv·d_{t}[ e^{(-1)·(b/m)·t} ] = mv·e^{(-1)·(b/m)·t}·(-1)·(b/m) = ...

... (-b)·ve^{(-1)·(b/m)·t} = (-b)·d_{t}[x]


Vertical:

Ley:

m·d_{tt}^{2}[y] = (-k)·y+qg

y(t) = re^{(k/m)^{(1/2)}·it}+(1/k)·qg

Deducción:

m·d_{tt}^{2}[y] = m·d_{t}[ d_{t}[y] ] = m·d_{t}[ d_{t}[ re^{(k/m)^{(1/2)}·it}+(1/k)·qg ] ] = ...

... m·d_{t}[ d_{t}[ re^{(k/m)^{(1/2)}·it} ]+d_{t}[ (1/k)·qg ] ] = ...

... m·d_{t}[ d_{t}[ re^{(k/m)^{(1/2)}·it} ]+0 ] = m·d_{t}[ d_{t}[ re^{(k/m)^{(1/2)}·it} ] = ...

... m·d_{tt}^{2}[ re^{(k/m)^{(1/2)}·it} ] = (-k)·re^{(k/m)^{(1/2)}·it} = ...

... (-k)·re^{(k/m)^{(1/2)}·it}+(-1)·qg+qg = (-k)·( re^{(k/m)^{(1/2)}·it}+(1/k)·qg )+qg = (-k)·y+qg

Ley:

m·d_{tt}^{2}[y] = (-b)·d_{t}[y]+qg

d_{t}[y] = ve^{(-1)·(b/m)·t}+(1/b)·qg

Deducción:

m·d_{tt}^{2}[y] = m·d_{t}[ d_{t}[y] ] = m·d_{t}[ ve^{(-1)·(b/m)·t}+(1/b)·qg ] = ...

... m·( d_{t}[ ve^{(-1)·(b/m)·t} ]+d_{t}[ (1/b)·qg ] ) = ...

... m·( d_{t}[ ve^{(-1)·(b/m)·t} ]+0 ) = m·d_{t}[ ve^{(-1)·(b/m)·t} ] = (-b)·ve^{(-1)·(b/m)·t} = ...

... (-b)·ve^{(-1)·(b/m)·t}+(-1)·qg+qg = (-b)·( ve^{(-1)·(b/m)·t}+(1/b)·qg )+qg = (-b)·d_{t}[y]+qg


Ley:

Sea I_{c}·(1/2)·d_{t}[w]^{2} = E ==>

Si d[I_{c}] = Mr^{2}·i·(k/m)^{(1/2)}·e^{(k/m)^{(1/2)}·it}·d[t] ==>

w(t) = ( (8/M)·(1/r)^{2}·E )^{(1/2)}·(m/k)^{(1/2)}·e^{(-1)·(1/2)·(k/m)^{(1/2)}·it}

Ley:

Sea I_{c}·(1/2)·d_{t}[w]^{2} = E ==>

Si d[I_{c}] = Mrve^{(-1)·(b/m)·t}·d[t] ==>

w(t) = ( (8/M)·(1/(rv))·E )^{(1/2)}·i·(m/b)^{(1/2)}·e^{(1/2)·(b/m)·t}


Obertura de hombros y caderas robótica:

Por amortiguador de retorno con empuje de obertura de fluido.

Ley:

m·d_{tt}^{2}[y] = (-k)·y+( sin(w)·qg+sin(s)·pg )

y(t) = re^{(k/m)^{(1/2)}·it}+(1/k)·( sin(w)·qg+sin(s)·pg )

Ley:

m·d_{tt}^{2}[y] = (-b)·d_{t}[y]+( sin(w)·qg+sin(s)·pg )

d_{t}[y] = ve^{(-1)·(b/m)·t}+(1/b)·( sin(w)·qg+sin(s)·pg )


Estiramiento de rodillas y codos robótica:

Por amortiguador de retorno con empuje de obertura de fluido.

Ley:

m·d_{tt}^{2}[y] = (-k)·y+( F+(-1)·qg )

y(t) = re^{(k/m)^{(1/2)}·it}+(1/k)·( F+(-1)·qg )

Ley:

m·d_{tt}^{2}[y] = (-b)·d_{t}[y]+( F+(-1)·qg )

d_{t}[y] = ve^{(-1)·(b/m)·t}+(1/b)·( F+(-1)·qg )


Ley: [ de rezo al Mal ]

Los hombres no están atacando,

a los xtraterrestres.

Los xtraterrestres no están atacando,

a los hombres.

Ley:

Se matan entre ellos en su mundo.

Cometen adulterio entre ellos en su mundo.


Principio:

U(x,y,z) = Potencial[ Q(x,y,z) ]

U(yz,zx,xy) = Anti-Potencial[ Q(yz,zx,xy) ]

Principio:

div-exp[ U(x,y,z) ] = sum[k = 1]-[3][ d_{xyz}^{3}[ e^{U_{k}(x,y,z)} ]

Si div-exp[ U(x,y,z) ] = 0 ==>

div-exp[ U(x,y,z) ] = d_{xyz}^{3}[ e^{sum[k = 1]-[3][ U_{k}(x,y,z) ]} ]

Principio:

Anti-div-exp[ U(yz,zx,xy) ] = sum[k = 1]-[3][ d_{kij}^{2}[ e^{U_{k}(yz,zx,xy)} ] ]

Si Anti-div-exp[ U(yz,zx,xy) ] = 0 ==>

Anti-div-exp[ U(yz,zx,xy) ] = d_{kij}^{2}[ e^{sum[k = 1]-[3][ U_{k}(yz,zx,xy) ]} ]

Ley:

Si Q(x,y,z) = U·< (1/x),(1/y),(1/z) > ==> 

U(x,y,z) = U·( ln(ax)+ln(ay)+ln(az) )

div-exp[ U(x,y,z) ] = Ua^{3}

F(z) = int-int[ div-exp[ U(x,y,z) ] ]d[x]d[x]+int-int[ div-exp[ U(x,y,z) ] ]d[y]d[y] = ...

... Ua^{3}·(1/2)·( x^{2}+y^{2} )

Ley:

Si Q(yz,zx,xy) = U·< (1/(yz)),(1/(zx)),(1/(xy)) > ==> 

U(yz,zx,xy) = U·( ln(byz)+ln(bzx)+ln(bxy) )

Anti-div-exp[ U(yz,zx,xy) ] = Ub^{3}·4xyz

F(z) = int-int[ Anti-div-exp[ U(yz,zx,xy) ] ]d[x]d[y]+int-int[ Anti-div-exp[ U(yz,zx,xy) ] ]d[y]d[x] = ...

... Ub^{3}·2z·(xy)^{2}


Ley:

Si Q(x,y,z) = aU·< ((y+z)/x),((z+x)/y),((x+y)/z) > ==> 

U(x,y,z) = U·( (ay+az)·ln(ax)+(az+ax)·ln(ay)+(ax+ay)·ln(az) )

div-exp[ U(x,y,z) ] = Ua^{3}·( ...

... (ax)^{ay+az+(-1)}·ln(ax)·( 2+(ay+az)·ln(ax) )+...

... (ay)^{az+ax+(-1)}·ln(ay)·( 2+(az+ax)·ln(ay) )+...

... (az)^{ax+ay+(-1)}·ln(az)·( 2+(ax+ay)·ln(az) ) )

Ley:

E(x_{k}) = int-int[ div-exp[ U_{k}(x,y,z) ] ]d[(1/a)^{2}·(i+j)] = ...

... U·(ak)^{ai+aj+(-1)}·[o(ai+aj)o] ( 2+(1/2)·(ai+aj)·ln(ak) )·(ai+aj)

x_{k}(t) = ...

... (1/a)·Anti-[ ( s /o(s)o/ ...

... int[ (as)^{ai+aj+(-1)}·[o(ai+aj)o] ( 2+(1/2)·(ai+aj)·ln(as) )·(ai+aj) ]d[s] )^{[o(s)o] (1/2)} ]-( ...

... ( (2/m)·U )^{(1/2)}·at )

Deducción:

d_{ax}[ (ax)^{ay+az} ] = (ay+az)·(ax)^{ay+az+(-1)} 

d_{ay}[ (ay+az)·(ax)^{ay+az+(-1)} ] = (ax)^{ay+az+(-1)}·( 1+ay·ln(ax)+az·ln(ax) )

d_{az}[ (ax)^{ay+az+(-1)}·( 1+(ay+az)·ln(ax) ) ] = (ax)^{ay+az+(-1)}·ln(ax)·( 2+(ay+az)·ln(ax) )

Ley:

Si Q(yz,zx,xy) = bU·< ((zx+xy)/(yz)),((xy+yz)/(zx)),((yz+zx)/(xy)) > ==> 

U(yz,zx,xy) = U·( (bzx+bxy)·ln(byz)+(bxy+byz)·ln(bzx)+(byz+bzx)·ln(bxy) )

Anti-div-exp[ U(yz,zx,xy) ] = Ub·( ...

... (byz)^{bzx+bxy+(-1)}·(bz+by)·( 1+ln(byz) )+...

... (bzx)^{bxy+byz+(-1)}·(bx+bz)·( 1+ln(bzx) )+...

... (bxy)^{byz+bzx+(-1)}·(by+bx)·( 1+ln(bxy) ) )

Ley:

E(x_{k}) = int[ Anti-div-exp[ U_{k}(yz,zx,xy) ] ]d[(1/b)·k] = U·(bij)^{bik+bkj+(-1)}·( ( 1/ln(bij) )+1 )

x_{k}(t) = (a/b)·Anti-[ ( s /o(s)o/ int[ (bij)^{ais+asj+(-1)}·( ( 1/ln(bij) )+1 ) ]d[s] )^{[o(s)o] (1/2)} ]-( ...

... ( (2/m)·U )^{(1/2)}·(b/a)·t )

Deducción:

d_{byz}[ (byz)^{bzx+bxy} ] = (bzx+bxy)·(byz)^{bzx+bxy+(-1)}

d_{x}[ (bzx+bxy)·(byz)^{bzx+bxy+(-1)} ] = (byz)^{bzx+bxy+(-1)}·(bz+by)·( 1+ln(byz) )

No hay comentarios:

Publicar un comentario