domingo, 26 de octubre de 2025

electro-magnetismo y mecánica-ingeniería y ecuaciones-en-derivadas-parciales y mecánica-física y análisis-matemático-6 y medicina

Examen de electro-magnetismo:

Principio:

E(x,y,z) = qk·(1/r)^{3}·a·< x^{2},y^{2},z^{2} >

E(yz,zx,xy) = qk·(1/r)^{4}·a^{2}·< (yz)^{2},(zx)^{2},(xy)^{2} >

Ley:

div[ E(x,y,z) ] = ?

Anti-div[ E(yz,zx,xy) ] = ?

Ley:

Anti-Potencial[ E(x,y,z) ] = ?

Potencial[ E(yz,zx,xy) ] = ?

Ley: [ de corrección del examen ]

div[ E(x,y,z) ] = d_{x(yz)}^{2}[ Anti-Potencial[ E(x,y,z) ] ]

Anti-div[ E(yz,zx,xy) ] = d_{x(yz)}^{2}[ Potencial[ E(yz,zx,xy) ] ]


Ley:

R·d_{t}[q(t)]+(-C)·p(t) = W·f(ut)·e^{ut}

p(t) = W·( 1/(uR·d_{ut}[f(ut)]+(-C)·f(ut)) )·f(ut)·e^{ut}

q(t) = W·( ut /o(ut)o/ (uR·f(ut)+(-C)·int[ f(ut) ]d[ut]) ) [o(ut)o] f(ut) [o(ut)o] e^{ut}

Ley:

R·d_{t}[q(t)]+C·p(t) = W·f(ut)·e^{(-1)·ut}

p(t) = W·( 1/((-u)·R·d_{ut}[f(ut)]+C·f(ut)) )·f(ut)·e^{(-1)·ut}

q(t) = W·( ut /o(ut)o/ ((-u)·R·f(ut)+C·int[ f(ut) ]d[ut]) ) [o(ut)o] f(ut) [o(ut)o] e^{(-1)·ut}


Ley:

Sea ( d_{t}[ I_{cx} ] = 0 & d_{t}[ I_{cy} ] = 0 ) ==>

Si d[M_{1}(t)] = (1/2)·mgx·(1/s)^{2}·cos(nw)·d[w] ==>

M_{1}(t) = (1/2)·mg·(x/n)·(1/s)^{2}·sin(nw)

Si d[ d[M_{2}(t)] ] = mg·(1/s)^{2}·sin(nw)·cos(nw)·d[y]d[w] ==>

M_{2}(t) = mg·(y/n)·(1/s)^{2}·(1/2)·( sin(nw) )^{2}

M_{1}(t) = M_{2}(t) <==> ( w(t) = (1/n)·arc-sin( I_{cx}/I_{cy} ) & I_{cx} [< I_{cy} )

Ley:

Sea d_{t}[ I_{c} ] = 0 ==>

Si d[M_{1}(t)] = (1/2)·I_{c}·u^{2}·cos(nw)·d[w] ==>

M_{1}(t) = (1/2)·I_{c}·u^{2}·(1/n)·sin(nw)

Si d[ d[M_{2}(t)] ] = I_{c}·u^{2}·(1/x)·sin(nw)·cos(nw)·d[x]d[w] ==>

M_{2}(t) = I_{c}·u^{2}·ln(ax)·(1/n)·(1/2)·( sin(nw) )^{2}

M_{1}(t) = M_{2}(t) <==> ( w(t) = (1/n)·arc-sin( ( 1/ln( aI_{c}·(1/(md)) ) ) ) & aI_{c} >] md·e )


Ley: [ del calor electro-magnético ]

div[ E_{e}(x,y,t) ] = (-2)·(1/c)·B_{e}(x,y,t)

Deducción:

E_{e}(x,y,t)+int[ B_{e}(x,y,t) ]d[t] = 0 = m·d_{tt}^{2}[ < x,y > ]

x(t) = ct·( cos(w) )^{2}

y(t) = ct·( sin(w) )^{2}

div[ E_{e}(x,y,t) ]+div[ inr[ B_{e}(x,y,t) ]d[t] ] = 0^{2}

div[ int[ B_{e}(x,y,t) ]d[t] ] = ( 1/(d[x]+d[y]) )·(d[x]+d[y]) [o] div[ int[ B_{e}(x,y,t) ]d[t] ]

div[ E_{e}(x,y,t) ]+2·(1/c)·B_{e}(x,y,t) = 0^{2}

div[ E_{e}(x,y,t) ] = (-2)·(1/c)·B_{e}(x,y,t)

Ley: [ del calor gravito-magnético ]

div[ E_{g}(x,y,t) ] = (-2)·(1/c)·B_{g}(x,y,t)


Teorema:

d_{x}[u(x,y,t)]+d_{y}[u(x,y,t)] = (-2)·(1/c)·d_{t}[u(x,y,t)]

u(x,y,0) = H(ax,ay)

u(x,y,(1/u)) = K(ax,ay)

u(x,y,t) = ( (1+(-1)·ut)·H(ax,ay)+ut·K(ax,ay) || 1 )·e^{ax+ay+(-1)·act || 0}

Teorema:

d_{x}[u(x,y,t)]+d_{y}[u(x,y,t)] = 2·(1/c)·d_{t}[u(x,y,t)]

u(x,y,0) = H(ax,ay)

u(x,y,(1/u)) = K(ax,ay)

u(x,y,t) = ( (1+(-1)·ut)·H(ax,ay)+ut·K(ax,ay) || 1 )·e^{ax+ay+act || 0}


Teorema:

d_{x}[u(x,y,t)]+d_{y}[u(x,y,t)] = (-2)·(1/c)·d_{t}[u(x,y,t)]

u(0,0,t) = f(ut)

u(p,q,t) = g(ut)

u(x,y,t) = ...

... ( (1/2)·( (1+(-1)·(x/p))·f(ut)+(1+(-1)·(y/q))·f(ut) )+(1/2)·( (x/p)·g(ut)+(y/q)·g(ut) ) || 1 )·...

... e^{ax+ay+(-1)·act || 0}

Teorema:

d_{x}[u(x,y,t)]+d_{y}[u(x,y,t)] = 2·(1/c)·d_{t}[u(x,y,t)]

u(0,0,t) = f(ut)

u(p,q,t) = g(ut)

u(x,y,t) = ...

... ( (1/2)·( (1+(-1)·(x/p))·f(ut)+(1+(-1)·(y/q))·f(ut) )+(1/2)·( (x/p)·g(ut)+(y/q)·g(ut) ) || 1 )·...

... e^{ax+ay+act || 0}


Teorema:

d_{x}[u(x,y,t)]+d_{y}[u(x,y,t)] = (-2)·(1/c)·d_{t}[u(x,y,t)]

u(0,q,t) = f(ut)

u(p,0,t) = g(ut)

u(x,y,t) = ?

Teorema:

d_{x}[u(x,y,t)]+d_{y}[u(x,y,t)] = 2·(1/c)·d_{t}[u(x,y,t)]

u(0,q,t) = f(ut)

u(p,0,t) = g(ut)

u(x,y,t) = ?


Teorema:

d_{xx}^{2}[u(x,y,t)]+d_{yy}^{2}[u(x,y,t)] = (-2)·(1/c)^{2}·d_{tt}^{2}[u(x,y,t)]

u(x,y,0) = H(ax,ay)

d_{t}[u(x,y,0)] = 0

u(x,y,t) = ...

... (1/2)·( e^{ax+ay+ac·it || ln( H(ax,ay) )+act}+e^{ax+ay+ac·it || ln( H(ax,ay) )+(-1)·act} )

Teorema:

d_{xx}^{2}[u(x,y,t)]+d_{yy}^{2}[u(x,y,t)] = 2·(1/c)^{2}·d_{tt}^{2}[u(x,y,t)]

u(x,y,0) = H(ax,ay)

d_{t}[u(x,y,0)] = 0

u(x,y,t) = ...

... (1/2)·( e^{ax+ay+act || ln( H(ax,ay) )+act}+e^{ax+ay+act || ln( H(ax,ay) )+(-1)·act} )


Teorema:

d_{xx}^{2}[u(x,y,t)]+d_{yy}^{2}[u(x,y,t)] = (-2)·(1/c)^{2}·d_{tt}^{2}[u(x,y,t)]

u(0,y,0) = F(ay)

u(r,y,0) = G(ay)

d_{t}[u(x,y,0)] = 0

u(x,y,t) = ?

Teorema:

d_{xx}^{2}[u(x,y,t)]+d_{yy}^{2}[u(x,y,t)] = 2·(1/c)^{2}·d_{tt}^{2}[u(x,y,t)]

u(0,y,0) = F(ay)

u(r,y,0) = G(ay)

d_{t}[u(x,y,0)] = 0

u(x,y,t) = ?


Teorema:

d_{xx}^{2}[u(x,y,t)]+d_{yy}^{2}[u(x,y,t)] = (-2)·(1/c)^{2}·d_{tt}^{2}[u(x,y,t)]

u(x,y,0) = 0

d_{t}[u(x,y,0)] = h(ax,ay)

u(x,y,t) = (1/2)·sum[k = 1]-[oo][ ...

... int[h(ax,ay)+(-1)·act·0 || (4t)^{(1/2)}]-[h(ax,ay)+act·0 || (4t)^{(1/2)}][ w ]d[w] ]·e^{ax+ay+ac·it || 0}

Teorema:

d_{xx}^{2}[u(x,y,t)]+d_{yy}^{2}[u(x,y,t)] = 2·(1/c)^{2}·d_{tt}^{2}[u(x,y,t)]

u(x,y,0) = 0

d_{t}[u(x,y,0)] = h(ax,ay)

u(x,y,t) = (1/2)·sum[k = 1]-[oo][ ...

... int[h(ax,ay)+(-1)·act·0 || (4t)^{(1/2)}]-[h(ax,ay)+act·0 || (4t)^{(1/2)}][ w ]d[w] ]·e^{ax+ay+act || 0}


Teorema:

d_{xx}^{2}[u(x,y,t)]+d_{yy}^{2}[u(x,y,t)] = (-2)·(1/c)^{2}·d_{tt}^{2}[u(x,y,t)]

u(x,y,0) = 0

d_{t}[u(0,y,0)] = ac·f(ay)

d_{t}[u(r,y,0)] = ac·g(ay)

u(x,y,t) = ?

Teorema:

d_{xx}^{2}[u(x,y,t)]+d_{yy}^{2}[u(x,y,t)] = 2·(1/c)^{2}·d_{tt}^{2}[u(x,y,t)]

u(x,y,0) = 0

d_{t}[u(0,y,0)] = ac·f(ay)

d_{t}[u(r,y,0)] = ac·g(ay)

u(x,y,t) = ?


Motores a combustión de explosión acotada:

Ley:

Sea d[I_{c}] = (1/s)^{2}·Mrv·d[t] ==>

Si (I_{c}/2)·d_{t}[w]^{2} = qgh·cos(ut) ==>

x(t) = (M/(md))·(1/s)^{2}·rvt

w(t) = (1/u)·( 2qgh·(1/(Mrv))·us^{2}·( ln(ut) [o(ut)o] sin(ut) ) )^{[o(ut)o] (1/2)}

(1/u) [< t [< (pi/u)

Ley:

Sea d[I_{c}] = (1/s)^{2}·Mrgt·d[t] ==>

Si (I_{c}/2)·d_{t}[w]^{2} = qgh·sin(ut) ==>

x(t) = (M/(md))·(1/s)^{2}·rg·(1/2)·t^{2}

w(t) = (1/u)·( 4qgh·(1/(Mrg))·(us)^{2}·( (1/(ut)) [o(ut)o] cos(ut) ) )^{[o(ut)o] (1/2)}

(1/u) [< t [< (pi/(2u))


Teorema:

( cos(w) )^{4}+(-1)·( sin(w) )^{4}+i·sin(2w) = e^{2iw}

Teorema:

( cos(w) )^{4}+( sin(w) )^{4}+(1/2)·( sin(2w) )^{2} = 1


Ley:

Sea ( d_{t}[ I_{cx} ] = 0 & d_{t}[ I_{cy} ] = 0 ) ==>

Si d[ d[M(t)] ] = qg·(1/s)^{2}·sin(nw)·cos(nw)·d[x]d[w] ==>

M(t) = qg·(x/n)·(1/s)^{2}·(1/2)·( sin(nw) )^{2}

(I_{c}/2)·d_{t}[w]^{2} = qgx·(1/(ns))^{2}·(1/4)·( nw+(-1)·(1/2)·sin(2nw) )

x(t) = I_{c}·(1/(md))

w(t) = (1/n)·Anti-[ ( s /o(s)o/ ( (1/4)·s^{2}+(1/8)·cos(2s) ) )^{[o(s)o](1/2)}]-( ...

... ( (1/(md))·qg )^{(1/2)}·(1/s)·t )

Ley:

Sea d_{t}[ I_{c} ] = 0 ==>

Si d[ d[M(t)] ] = I_{c}·u^{2}·(1/x)·sin(nw)·cos(nw)·d[x]d[w] ==>

M(t) = I_{c}·u^{2}·ln(ax)·(1/n)·(1/2)·( sin(nw) )^{2}

(I_{c}/2)·d_{t}[w]^{2} = I_{c}·u^{2}·ln(ax)·(1/n)^{2}·(1/4)·( nw+(-1)·(1/2)·sin(2nw) )

x(t) = I_{c}·(1/(md))

w(t) = (1/n)·Anti-[ ( s /o(s)o/ ( (1/4)·s^{2}+(1/8)·cos(2s) ) )^{[o(s)o](1/2)}]-( ...

... ( ln( aI_{c}·(1/md) ) )^{(1/2)}·ut )


Ecuaciones de densidades:

Leyes de agua y aceite:

Ley: 

d_{x}[u(x,y)]+d_{y}[u(x,y)] = (m/V)·xy

u(0,y) = m·F(ay)

u(r,y) = m·G(ay)

u(x,y) = ( (1+(-1)·(x/r))·F(ay)+(x/r)·G(ay) || 1 )·( (m/(4V))·yx^{2} || (m/(4V))·xy^{2} || m )

Ley:

d_{x}[u(x,y)]+d_{y}[u(x,y)] = (-V)·m·( 1/(xy) )^{2}

u(x,0) = m·F(ax)

u(x,r) = m·G(ax)

u(x,y) = ( (1+(-1)·(y/r))·F(ax)+(y/r)·G(ax) || 1 )·( (V/2)·( m/(xy^{2}) ) || (V/2)·( m/(yx^{2}) ) || m )


Ley: [ de ola de mar ]

d_{x}[u(x,y)]+d_{y}[u(x,y)] = m·(1/a)·(1/(xy))

u(0,y) = m·F(ay)

u(r,y) = m·G(ay)

u(x,y) = ( (1+(-1)·(x/r))·F(ay)+(x/r)·G(ay) || 1 )·( (1/2)·(m/(ay))·ln(ax) || (1/2)·(m/(ax))·ln(ay) || m )


Ley: 

d_{x}[u(x,y)]+d_{y}[u(x,y)]+a·u(x,y) = (m/V)·xy

u(0,y) = m·F(ay)

u(r,y) = m·G(ay)

u(x,y) = ( (1+(-1)·(x/r))·F(ay)+(x/r)·G(ay) || 1 )·....

... ( (m/(6V))·yx^{2} || (m/(6V))·xy^{2} || (1/(3V))·(m/a)·xy || m )

Ley:

d_{x}[u(x,y)]+d_{y}[u(x,y)]+a·u(x,y) = (-V)·m·( 1/(xy) )^{2}

u(x,0) = m·F(ax)

u(x,r) = m·G(ax)

u(x,y) = ( (1+(-1)·(y/r))·F(ax)+(y/r)·G(ax) || 1 )·...

... ( (V/3)·( m/(xy^{2}) ) || (V/3)·( m/(yx^{2}) ) || (-1)·(V/3)·(m/a)·( 1/(xy) )^{2} || m )


Arte:

Sea u(x) = e^{(-x)} ==>

[Ax][ f(a)·(1/u)^{0} = f(a) ]

[Ex][ (-1)^{k}·(k+(-1))!·d_{a...a}^{k}[f(a)]·(1/u)^{k} = d_{a...a}^{k}[f(a)] ]

Exposición:

x = (-1)·(1/k)·ln( (-1)^{k}·(k+(-1))! )

Sea z(x) = e^{(-x)}+a ==>

Sea u(x) = e^{(-x)} ==>

d[u] = d[z]

s(u) = 1

d[u] = d[s(u)] = d[1] ==>

Caso 1:

int[x = 0]-[1][ f(a)/(a+(-z)) ]d[z] = int-int[ (-1)·d_{a}[f(a)]·(1/u) ]d[u]d[a] = f(a)

int[ (-1)·d_{a}[f(a)]·(1/u) ]d[u] = d_{a}[f(a)]

(-1)·d_{a}[f(a)]·(1/z) = d_{a}[f(a)]

Caso 2:

int-int[x = 0]-[1][ f(a)/(a+(-z))^{2} ]d[z]d[z] = ...

... int-int-int-int[ d_{aa}^{2}[f(a)]·(1/u)^{2} ]d[u]d[u]d[a]d[a] = f(a)

int-int[ d_{aa}^{2}[f(a)]·(1/u)^{2} ]d[u]d[u] = d_{aa}^{2}[f(a)]

d_{aa}^{2}[f(a)]·(1/z)^{2} = d_{aa}^{2}[f(a)]

Caso 3:

int-int-int[x = 0]-[1][ 2·f(a)/(a+(-z))^{3} ]d[z]d[z]d[z] = ...

... int-int-int-int-int-int[ (-1)·2·d_{aaa}^{2}[f(a)]·(1/u)^{3} ]d[u]d[u]d[u]d[a]d[a]d[a] = f(a)

int-int-int[ (-1)·2·d_{aaa}^{3}[f(a)]·(1/u)^{3} ]d[u]d[u]d[u] = d_{aaa}^{3}[f(a)]

(-1)·2·d_{aaa}^{3}[f(a)]·(1/u)^{3} = d_{aaa}^{3}[f(a)]


Artes: [ de series de Laurent ]

Sea z(x) = e^{(-x)} ==>

Exposición:

x = 0

Arte:

[Ex][ e^{x} = 1+sum[k = 1]-[oo][ (-1)^{k}·(1/k)·( xe^{x} )^{k} ] ]

[Ex][ e^{(-x)} = 1+sum[k = 1]-[oo][ (1/k)·( xe^{(-x)} )^{k} ] ]

Arte:

[Ex][ ( 1/(1+(-x)) ) = 1+sum[k = 1]-[oo][ k!·(1/k)·( xe^{(-x)} )^{k} ] ]

[Ex][ (-1)·( 1/(1+(-x))^{2} ) = (-1)+sum[k = 1]-[oo][ (-1)^{k+1}·(k+1)!·(1/k)·( xe^{(-x)} )^{k} ] ]

Arte:

[Ex][ e-pos[m](x) = m+sum[k = 1]-[oo][ (-1)^{k}·( 1+m·(1/k) )·( xe^{x} )^{k} ] ]

[Ex][ e-neg[m](x) = (-m)+sum[k = 1]-[oo][ (-1)^{k}·( 1+(-m)·(1/k) )·( xe^{x} )^{k} ] ]

Arte:

[Ex][ octopus(x) = 1+sum[k = 1]-[oo][ (-1)^{k}·(k+1)!·(1/k)·( xe^{x} )^{k} ] ]

[Ex][ d_{x}[ octopus(x) ] = 2+sum[k = 1]-[oo][ (-1)^{k}·(k+2)!·(1/k)·( xe^{x} )^{k} ] ]

Arte:

[Ex][ ln(1+x) = (-x)·e^{x}+sum[k = 2]-[oo][ (-1)·k!·(1/k)^{2}·( xe^{x} )^{k} ] ]

[Ex][ ln(1+(-x)) = xe^{(-x)}+sum[k = 2]-[oo][ (-1)^{k+1}·k!·(1/k)^{2}·( xe^{(-x)} )^{k} ] ]

(-0) = 0 = ln(1+0) = ln(1)


Enfermedad de centro de dos mandamientos duales a densidad de carga constante:

Ley:

d_{x}[f(x)] = qaie^{axi}

d_{x}[g(x)] = (-1)·qaie^{(-1)·ayi}

s(y) = x

Robar la intimidad,

sin conexión de luz eléctrica:

No puede duchar-se con cortina opaca.

Ley:

d_{x}[f(x)] = iqa·cos(ax)

d_{x}[g(x)] = (-1)·qa·sin(ax)

f(x)+g(x) = qe^{axi}

Robar la libertad,

sin conexión de luz eléctrica:

No puede salir lloviendo o nublado.

Ley:

d_{x}[f(x)] = (-i)·qa·cos(ax)

d_{x}[g(x)] = (-1)·qa·sin(ax)

f(x)+g(x) = qe^{(-1)·axi}

Terapia con constructor:

Ley:

d_{x}[f(x)] = qae^{ax}

d_{x}[g(x)] = (-1)·qae^{(-1)·ay}

s(y) = x

No robar la intimidad,

con visita de algoritmo interno:

Ley:

d_{x}[f(x)] = qa·cosh(ax)

d_{x}[g(x)] = qa·sinh(ax)

f(x)+g(x) = qe^{ax}

No robar la libertad,

con visita de algoritmo externo:

Ley:

d_{x}[f(x)] = (-1)·qa·cosh(ax)

d_{x}[g(x)] = qa·sinh(ax)

f(x)+g(x) = qe^{(-1)·ax}


Enfermedad de centro de dos mandamientos duales a densidad de carga variable:

Ley:

d_{x}[f(x)] = d_{x}[q(x)]·ie^{axi}

d_{x}[g(x)] = (-1)·d_{x}[q(x)]·ie^{(-1)·ayi}

s(y) = x

Deducción:

int[ d_{x}[q(x)] ]d[x] [o(x)o] int[ ie^{axi} ]d[x] = int[ d_{x}[q(x)] ]d[x] [o(ax)o] int[ ie^{axi} ]d[ax]

Ley:

d_{x}[f(x)] = i·d_{x}[q(x)]·cos(ax)

d_{x}[g(x)] = (-1)·d_{x}[q(x)]·sin(ax)

f(x)+g(x) = q(x) [o(ax)o] e^{axi}

Ley:

d_{x}[f(x)] = (-i)·d_{x}[q(x)]·cos(ax)

d_{x}[g(x)] = (-1)·d_{x}[q(x)]·sin(ax)

f(x)+g(x) = q(x) [o(ax)o] e^{(-1)·axi}

Terapia con constructor:

Ley:

d_{x}[f(x)] = d_{x}[q(x)]·e^{ax}

d_{x}[g(x)] = (-1)·d_{x}[q(x)]·e^{(-1)·ay}

s(y) = x

Ley:

d_{x}[f(x)] = d_{x}[q(x)]·cosh(ax)

d_{x}[g(x)] = d_{x}[q(x)]·sinh(ax)

f(x)+g(x) = q(x) [o(ax)o] e^{ax}

Ley:

d_{x}[f(x)] = (-1)·d_{x}[q(x)]·cosh(ax)

d_{x}[g(x)] = d_{x}[q(x)]·sinh(ax)

f(x)+g(x) = q(x) [o(ax)o] e^{(-1)·ax}


Principio: [ de oftalmología de imagen y sonido ]

Vista sana:

d_{x}[q( (pi/(2a)) )]·d_{y}[p( (-1)·(pi/(2a)) )]+d_{x}[p( (pi/a) )]·d_{y}[q( (0/a) )] = pqa^{2}

Oída sana:

d_{x}[q( (pi/(2a))·i )]·d_{y}[p( (-1)·(pi/(2a))·i )]+d_{x}[p( (pi/a)·i )]·d_{y}[q( (0/a)·i )] = pqa^{2}


Principio: [ de definición de lentes ]

Lentes de Miopía:

f(ax) = (-1)·( ax /o(ax)o/ (1/(n+1))·(ax)^{n+1} )

Lentes de Hipermetropía:

g(ay) = ( ay /o(ay)o/ (1/(n+1))·(ay)^{n+1} )


Ley: [ de gafas de miopía ]

q(x) = qe^{(-1)·(1/(n+1))·(ax)^{n+1} [o(ax)o] sin(ax) [o(ax)o] f(ax)} = qe^{sin(ax)}

p(x) = pe^{(-1)·(1/(n+1))·(ax)^{n+1} [o(ax)o] cos(ax) [o(ax)o] f(ax)} = pe^{cos(ax)}

Ley: [ de gafas de hipermetropía ]

p(y) = pe^{(1/(n+1))·(ay)^{n+1} [o(ay)o] sin(ay) [o(ay)o] g(ay)} = pe^{sin(ay)}

q(y) = qe^{(1/(n+1))·(ay)^{n+1} [o(ay)o] cos(ay) [o(ay)o] g(ay)} = qe^{cos(ay)}

Ley: [ de sonotone de miopía ]

q(x) = qe^{(-1)·(1/(n+1))·(ax)^{n+1} [o(ax)o] sinh(ax) [o(ax)o] f(ax)} = qe^{sinh(ax)}

p(x) = pe^{(-1)·(1/(n+1))·(ax)^{n+1} [o(ax)o] i·cosh(ax) [o(ax)o] f(ax)} = pe^{i·cosh(ax)}

Ley: [ de sonotone de hipermetropía ]

p(y) = pe^{(1/(n+1))·(ay)^{n+1} [o(ay)o] sinh(ay) [o(ay)o] g(ay)} = pe^{sinh(ay)}

q(y) = qe^{(1/(n+1))·(ay)^{n+1} [o(ay)o] i·cosh(ay) [o(ay)o] g(ay)} = qe^{i·cosh(ay)}


Principio: [ de ecuación de la lente ]

Miopía:

d_{z}[f(z,x)]+d_{x}[f(z,x)] = d_{z}[p(z)]+a·(-1)·(1/(ax))^{n}

f(z,x) = p(z)+(-1)·( ax /o(ax)o/ (1/(n+1))·(ax)^{n+1} )

Hipermetropía:

d_{z}[g(z,y)]+d_{y}[g(z,y)] = d_{z}[q(z)]+a·(1/(ay))^{n}

g(z,y) = q(z)+( ay /o(ay)o/ (1/(n+1))·(ay)^{n+1} )


Ley:

d_{z}[f(z,x)]+d_{x}[f(z,x)] = a·( 1+(-1)·(1/(ax))^{n} )

f(z,x) = az+(-1)·( ax /o(ax)o/ (1/(n+1))·(ax)^{n+1} )

d_{z}[g(z,x)]+d_{x}[g(z,x)] = a·( 1+(1/(ax))^{n} )

g(z,x) = az+( ax /o(ax)o/ (1/(n+1))·(ax)^{n+1} )

f(z,x)+g(z,x) = n·(n+1) <==> z = (1/(2a))·n·(n+1)

Si n = 2k ==> (1/2)·n·(n+1) € N

Si n = 2k+1 ==> (1/2)·n·(n+1) € N

Deducción:

d_{z}[f(z,x)] = d_{z}[ az+(-1)·( ax /o(ax)o/ (1/(n+1))·(ax)^{n+1} ) ] = ...

... d_{z}[ az ]+d_{z}[ (-1)·( ax /o(ax)o/ (1/(n+1))·(ax)^{n+1} ) ] = ...

... d_{z}[az]+0 = d_{z}[az] = a·d_{z}[z] = a

d_{x}[f(z,x)] = d_{x}[ az+(-1)·( ax /o(ax)o/ (1/(n+1))·(ax)^{n+1} ) ] = ...

... d_{x}[ az ]+d_{x}[ (-1)·( ax /o(ax)o/ (1/(n+1))·(ax)^{n+1} ) ] = ...

... 0+d_{x}[ (-1)·( ax /o(ax)o/ (1/(n+1))·(ax)^{n+1} ) ] = ...

... d_{x}[ (-1)·( ax /o(ax)o/ (1/(n+1))·(ax)^{n+1} ) ] = ...

... a·d_{ax}[ (-1)·( ax /o(ax)o/ (1/(n+1))·(ax)^{n+1} ) ] = ...

... a·(-1)·d_{ax}[ ( ax /o(ax)o/ (1/(n+1))·(ax)^{n+1} ) ] = a·(-1)·(1/(ax))^{n}

Ley:

d_{z}[f(z,y)]+d_{y}[f(z,y)] = a·( 2+(-1)·(1/(ay))^{n} )

f(z,y) = 2az+(-1)·( ay /o(ay)o/ (1/(n+1))·(ay)^{n+1} )

d_{z}[g(z,y)]+d_{y}[g(z,y)] = a·( 2+(1/(ay))^{n} )

g(z,y) = 2az+( ay /o(ay)o/ (1/(n+1))·(ay)^{n+1} )

( f(z,y)+g(z,y) )^{(1/2)} = n·(n+1) <==> z = (1/(4a))·n^{2}·(n^{2}+2n+1)

Si n = 2k ==> (1/4)·n^{2}·(n^{2}+2n+1) € N

Si n = 2k+1 ==> (1/4)·n^{2}·(n^{2}+2n+1) € N

Deducción:

Si n = 2k+1 ==>

(n^{2}+2n+1) = (n+1)^{2} = (2k+2)^{2} = 4k^{2}+4k+4 = 4·(k^{2}+k+1)



Ley:

d_{z}[f(z,x)]+d_{x}[f(z,x)] = a·( (1/(az))+(-1)·(1/(ax))^{n} )

f(z,x) = ln(az)+(-1)·( ax /o(ax)o/ (1/(n+1))·(ax)^{n+1} )

d_{z}[g(z,x)]+d_{x}[g(z,x)] = a·( (-1)·( 1/(1+(-1)·(az)) )+(-1)·(1/(ax))^{n} )

g(z,x) = ln(1+(-1)·(az))+(-1)·( ax /o(ax)o/ (1/(n+1))·(ax)^{n+1} )

f(z,x) = g(z,x) <==> z = (1/(2a))

Deducción:

ln(az) = ln(1+(-1)·(az))

az = 1+(-1)·(az)

2az = 1

z = (1/(2a))

Ley:

d_{z}[f(z,y)]+d_{y}[f(z,y)] = a·( (1/2)·(1/(az))+(1/(ay))^{n} )

f(z,y) = (1/2)·ln(az)+( ay /o(ay)o/ (1/(n+1))·(ay)^{n+1} )

d_{z}[g(z,y)]+d_{y}[g(z,y)] = a·( (-1)·( 1/((3/4)+(-1)·(az)) )+(1/(ay))^{n} )

g(z,y) = ln((3/4)+(-1)·(az))+( ay /o(ay)o/ (1/(n+1))·(ay)^{n+1} )

f(z,y) = g(z,y) <==> ( z = (1/(4a)) con raíz positiva  || z = (9/(4a)) con raíz negativa )

Deducción:

(1/2)·ln(az) = ln((3/4)+(-1)·(az))

(az)^{(1/2)} = (3/4)+(-1)·(az)

az = (9/16)+(-1)·(3/2)·az+(az)^{2}

0 = (9/16)+(-1)·(5/2)·az+(az)^{2}

az = (1/2)·( (5/2)+(-1)·( (25/4)+(-1)·(9/4) )^{(1/2)} ) = (1/2)·( (5/2)+(-2) ) = (1/4)

z = (1/(4a))

az = (1/2)·( (5/2)+( (25/4)+(-1)·(9/4) )^{(1/2)} ) = (1/2)·( (5/2)+2 ) = (9/4)

z = (9/(4a))


Principio: [ de refracción de la lente ]

sin(arw)+(-1)·cos(ars) = sw·(k+(-j))

(-1)·sin(arw)+cos(ars) = sw·(j+(-k))

w = (pi/2) <==> s = 0

w = 0 <==> s = (pi/2)

Ley:

Si k = j ==> sin(arw) = cos(ars)

Si j = k ==> cos(ars) = sin(arw)

Deducción:

sin(arw)+(-1)·cos(ars) = sw·(k+(-j)) = sw·(k+(-k)) = sw·0

sin(arw) = sin(arw)+0 = sin(arw)+( (-1)·cos(ars)+cos(ars) ) = ( sin(arw)+(-1)·cos(ars) )+cos(ars) = ...

... sw·0+cos(ars) = cos(ars)

Ley:

d_{rw}[f(w,x)]+d_{x}[f(w,x)] = a·( cos(arw)+(-1)·(1/(ax))^{n} )

f(w,x) = sin(arw)+(-1)·( ax /o(ax)o/ (1/(n+1))·(ax)^{n+1} )

d_{rs}[g(s,x)]+d_{x}[g(s,x)] = a·( sin(ars)+(1/(ax))^{n} )

g(s,x) = (-1)·cos(ars)+( ax /o(ax)o/ (1/(n+1))·(ax)^{n+1} )

f(w,x)+g(s,x) = sw·(k+(-j))

Ley:

d_{rw}[f(w,y)]+d_{y}[f(w,y)] = a·( (-1)·cos(arw)+(1/(ay))^{n} )

f(w,y) = (-1)·sin(arw)+( ay /o(ay)o/ (1/(n+1))·(ay)^{n+1} )

d_{rs}[g(s,y)]+d_{y}[g(s,y)] = a·( (-1)·sin(ars)+(-1)·(1/(ay))^{n} )

g(s,y) = cos(ars)+(-1)·( ay /o(ay)o/ (1/(n+1))·(ay)^{n+1} )

f(w,y)+g(s,y) = sw·(j+(-k))


Óptica de miopía de imagen:

Sea n la dioptría ==>

d_{x}[q(x)] = (-1)·q(x)·cos(ax)·a·(ax)^{n}

d_{x}[p(x)] = p(x)·sin(ax)·a·(ax)^{n}

Operación Láser de longitud de onda x = rojo 

f(x) = e^{( ( 1/(n+1) )·(ax)^{n+1}+ax ) [o(ax)o] sin(ax) }

g(x) = e^{( ( 1/(n+1) )·(ax)^{n+1}+ax ) [o(ax)o] cos(ax) }

Óptica de hipermetropía de imagen:

Sea n la dioptría ==>

d_{y}[p(y)] = p(y)·cos(ay)·a·(ay)^{n}

d_{y}[q(y)] = (-1)·q(y)·sin(ay)·a·(ay)^{n}

Operación Láser de longitud de onda y = verde 

f(y) = e^{( (-1)·( 1/(n+1) )·(ay)^{n+1}+ay ) [o(ay)o] sin(ay) }

g(y) = e^{( (-1)·( 1/(n+1) )·(ay)^{n+1}+ay ) [o(ay)o] cos(ay) }


Óptica de miopía de sonido:

Sea n la dioptría ==>

d_{x}[q(x)] = (-1)·q(x)·cosh(ax)·a·(ax)^{n}

d_{x}[p(x)] = (-i)·p(x)·sinh(ax)·a·(ax)^{n}

Operación Láser de longitud de onda x = rojo 

f(x) = e^{( ( 1/(n+1) )·(ax)^{n+1}+ax ) [o(ax)o] sinh(ax) }

g(x) = e^{( ( 1/(n+1) )·(ax)^{n+1}+ax ) [o(ax)o] i·cosh(ax) }

Óptica de hipermetropía de sonido:

Sea n la dioptría ==>

d_{y}[p(y)] = p(y)·cosh(ay)·a·(ay)^{n}

d_{y}[q(y)] = i·q(y)·sinh(ay)·a·(ay)^{n}

Operación Láser de longitud de onda y = verde 

f(y) = e^{( (-1)·( 1/(n+1) )·(ay)^{n+1}+ay ) [o(ay)o] sinh(ay) }

g(y) = e^{( (-1)·( 1/(n+1) )·(ay)^{n+1+ay ) [o(ay)o] i·cosh(ay) }


Catarata de miopía de imagen:

d_{x}[q(x)] = (-1)·q(x)·cos(ax)·a·(ax)^{10}

d_{x}[p(x)] = p(x)·sin(ax)·a·(ax)^{10}

Operación Láser de longitud de onda x = rojo

f(x) = e^{( (1/11)·(ax)^{11}+ax ) [o(ax)o] sin(ax) }

g(x) = e^{( (1/11)·(ax)^{11}+ax ) [o(ax)o] cos(ax) }

Catarata de hipermetropía de imagen ( ceguera ):

d_{y}[p(y)] = p(y)·cos(ay)·a·(ay)^{10}

d_{y}[q(y)] = (-1)·q(y)·sin(ay)·a·(ay)^{10}

Operación Láser de longitud de onda y = verde 

f(y) = e^{( (-1)·(1/11)·(ay)^{11}+ay ) [o(ay)o] sin(ay) }

g(y) = e^{( (-1)·(1/11)·(ay)^{11}+ay ) [o(ay)o] cos(ay) }


Ley: [ de Grado en Medicina Teoría Homologada ]

Matemáticas 1: Cálculo diferencial.

Química.


Matemáticas 2: Cálculo integral.

Física: Termodinámica y Cabal sanguíneo.

Espectroscopia de fluido corporal.


Teoría genética de infecciones víricas.

Teoría genética de infecciones bacteria-lógicas.


Quimioterapia de desintegración genética.

Óptica de imagen y sonido.


Psico-neurología de negación de voces esquizofrénicas.

Psico-neurología de doble mandamiento dual.


Neurología de resonancia eléctrica.

Neurología de anti-resonancia eléctrica.


Ley:

Un familiar de un matemático o físico tiene convalidada la teoría de medicina,

porque tiene ya la energía para esas o aquellas medicaciones que se derivan de la teoría,

y solo le faltan las asignaturas de practica de atención y cirugía.


Termodinámica de Medicina:

Fiebre y Termómetro:

Ley:

PV = kT

d_{P}[T(P,V)]·p = qR <==> p = ?

d_{V}[T(P,V)]·v = qR <==> v = ?

Ley:

d_{V}[P_{0}]·V^{2}+d_{P}[V_{0}]·P^{2} = kT

d_{P}[T(P,V)]·p = qR <==> p = ?

d_{V}[T(P,V)]·v = qR <==> v = ?

Ley:

d_{V}[P_{0}]·V^{2}+d_{P}[V_{0}]·P^{2} = kT

d_{PP}^{2}[T(P,V)]·p^{2} = qR <==> p = ?

d_{VV}^{2}[T(P,V)]·v^{2} = qR <==> v = ?

Ley:

PV = d_{T}[k]·T^{2}

d_{P}[T(P,V)]·p = qR <==> p = ?

d_{V}[T(P,V)]·v = qR <==> v = ?

Deducción:

d_{P}[T(P,V)] = d_{P}[ ( ( 1/d_{T}[k] )·PV )^{(1/2)} ] = ...

... (1/2)·( ( 1/d_{T}[k] )·PV )^{(-1)·(1/2)}·( V/d_{T}[k] )

No hay comentarios:

Publicar un comentario