jueves, 16 de octubre de 2025

producto-tensorial y teoría-de-juegos-en-economía-y-física y análisis-matemático-5 y mecánica-momento-de-inercia

Teorema:

A = k·( < a,0 > % < 0,a >)

B = k·( < a,0 > % < 0,(-a) >)

dim(A) = (1/2)

dim(B) = (1/2)

( < a,0 > % < 0,0 >) = (1/2)·( < a,0 > % < 0,a >)+(1/2)·( < a,0 > % < 0,(-a) >)


Lema: [ de gasto en defensa ]

PIB por cápita 8,400€

inversión del 5%:

(1/20)·32,000+20·1,600 = 33,600€ por cada 4 catalanohablantes.

Compra de armamento de 32,700€ por pack militar:

misil o torpedo o caja de proyectiles de cañón.

Lema:

Estrategia ganadora de venta,

del supremo o igual:

Make America empate again.

h(1) = 32,700€

F(1,1) = 1·1+(1+1) = 3

Estrategia ganadora de no venta,

del ínfimo o igual:

Make America first again.

h(2) = 65,400€

F(2,0) = 2·0+(2+0) = 2

Estrategias perdedoras:

h(1/2) = 16,350€

h(3/2) = 49,050€

F((1/2),(3/2)) = (3/4)+((1/2)+(3/2)) = (2.75)

F((3/2),(1/2)) = (3/4)+((3/2)+(1/2)) = (2.75)


Ley:

Hay gente que no es,

que no hay condenación.

Hay gente que es,

que hay condenación.

Deducción: [ por teoría de juegos ]

Jugadas ganadoras:

Joder a un esclavo infiel:

F(1,(-1)) = (-1)+(1+(-1)) = (-1)

F(2,(-1)) = (-2)+(2+(-1)) = (-1)

Jugadas perdedoras:

Joder a un señor fiel:

F(1,(-2)) = (-2)+(1+(-2)) = (-3)

F(2,(-2)) = (-4)+(2+(-2)) = (-4)


Ley:

Solo se puede conquistar con victoria,

haciendo que los infieles del Gestalt ignoren a los señores.

Solo se puede liberar con victoria,

no haciendo que los fieles del Gestalt ignoren a los señores.

Deducción: [ por teoría de juegos ]

Jugada ganadora:

Ignorar los infieles del Gestalt a los señores:

F(0,(-1)) = 0+(0+(-1)) = (-1)

Los infieles joden a infieles.

Jugada perdedora:

Ignorar los fieles del Gestalt a los señores:

F(0,(-2)) = 0+(0+(-2)) = (-2)

Los infieles joden a fieles.


Dual por dual de sabor:

Basik-kowetch-tate oil.

Acid-kowetch-tate wine.


Teorema:

int[x = 0]-[ln(oo)][ e^{(-1)·x^{n}} ]d[x] = (1/n!)

Teorema:

int[x = 0]-[ln(oo^{m+1})][ x^{m}·e^{(-x)} ]d[x] = m!

int[x = 0]-[ln(oo^{m+1})][ x^{m}·e^{(-1)·x^{n}} ]d[x] = (m!/n!)

Teorema:

int[x = 0]-[ln(oo^{(1/m)+1})][ x^{(1/m)}·e^{(-x)} ]d[x] = m

int[x = 0]-[ln(oo^{(1/m)+1})][ x^{(1/m)}·e^{(-1)·x^{n}} ]d[x] = m·( m!/(mn)! )

Demostración:

m = 0 & n = 1

int[x = 0]-[ln(oo)][ e^{(-1)·x} ]d[x] = [ (-1)·e^{(-1)·x} ]_{x = 0}^{x = ln(oo)} = 1

m = 1 & n = 1

int[x = 0]-[ln(oo^{2})][ xe^{(-1)·x} ]d[x] = ...

... [ (-1)·xe^{(-1)·x} ]_{x = 0}^{x = ln(oo^{2})}+[ (-1)·e^{(-1)·x} ]_{x = 0}^{x = ln(oo)} = 1

Teorema:

ln( (p+1)^{oo} ) = ( oo·log_{p+1}(2^{p}) )·ln(p+1) = ln(2^{p})·oo = ln(oo^{p})


Arte:

[En][ int[x = 0]-[ln(oo)][ e^{(-1)·x^{n}} ]d[x] = (1/n) ]

Exposición:

n = 1

Se define H(t) = int[x = 0]-[ln(oo)][ e^{(-1)·x^{n}·F(t)} ]d[x] ==>

d_{t}[H(t)] = f(t)·int[x = 0]-[ln(oo)][ (-1)·x^{n}·e^{(-1)·x^{n}·F(t)} ]d[x]

F(t) = x

d_{t}[H(t)] = d_{t}[x]·( 1/(n+1) )·(-1)

H(t) = x·( 1/(n+1) )·(-1) = F(t)·( 1/(n+1) )·(-1)

H( F^{o(-1)}(1) ) = F( F^{o(-1)}(1) )·( 1/(n+1) )·(-1) = ( 1/(n+1) )·(-1)

u(1) = (1/n)

v(1/n) = 0

H( F^{o(-1)}(1) ) = ( 1/(n+u(1)) )·(-1)^{u(1)} = ( 1/(n+v(1/n)) )·(-1)^{v(1/n)} = (1/n)


Arte:

[En][Em][ int[x = 0]-[ln(oo^{m+1})][ x^{m}·e^{(-1)·x^{n}} ]d[x] = ( 1/(m+n) ) ]

Exposición:

m = 0 & n = 1

Se define H(t) = int[x = 0]-[ln(oo^{m+1})][ x^{m}·e^{(-1)·x^{n}·F(t)} ]d[x] ==>

d_{t}[H(t)] = f(t)·int[x = 0]-[ln(oo^{m+1})][ (-1)·x^{m+n}·e^{(-1)·x^{n}·F(t)} ]d[x]

F(t) = x^{m+1}

d_{t}[H(t)] = (m+1)·x^{m}·d_{t}[x]·( 1/(m+n+1) )·(-1)

H(t) = x^{m+1}·( 1/(m+n+1) )·(-1) = F(t)·( 1/(m+n+1) )·(-1)

H( F^{o(-1)}(1) ) = F( F^{o(-1)}(1) )·( 1/(m+n+1) )·(-1) = ( 1/(m+n+1) )·(-1)

u(1) = (1/n)

v(1/n) = 0

H( F^{o(-1)}(1) ) = ( 1/(m+n+u(1)) )·(-1)^{u(1)} = ( 1/(m+n+v(1/n)) )·(-1)^{v(1/n)} = ( 1/(m+n) )


Teorema:

int[x = 0]-[oo][ ( sin(nx)/(nx) ) ]d[x] = (pi/n)

Demostración:

Se define H(t) = int[x = 0]-[oo][ e^{(-1)·(nxt)}·( sin(nx)/(nx) ) ]d[x] ==>

y = nx & d[y] = n·d[x]

H(t) = (1/n)·int[y = 0]-[oo][ e^{(-1)·(yt)}·( sin(y)/y ) ]d[y]

d_{t}[H(t)] = (-1)·(1/n)·int[y = 0]-[oo][ e^{(-1)·(yt)}·sin(y) ]d[y]

d_{t}[H(t)] = (-1)·(1/n)·( 1/(t^{2}+1) )

H(t) = (-1)·(1/n)·arc-tan(t)

H(0) = (-1)·(1/n)·(-pi) = (pi/n)

Teorema:

int[x = 0]-[oo][ ( cos(x/n)/x ) ]d[x] = ln(n)

Demostración:

Se define H(t) = int[x = 0]-[oo][ e^{(-1)·(xt)}·( cos(x/n)/x ) ]d[x] ==>

H(t) = int[x = 0]-[oo][ e^{(-1)·(xt)}·( cos(x/n)/x ) ]d[x]

d_{t}[H(t)] = (-1)·int[x = 0]-[oo][ e^{(-1)·(xt)}·cos(x/n) ]d[x]

d_{t}[H(t)] = (-1)·( t/(t^{2}+(1/n)^{2}) )

H(t) = (-1)·(1/2)·ln(t^{2}+(1/n)^{2})

H(0) = (-1)·(1/2)·2·ln(1/n) = ln(n)


Teorema:

int[x = ln(0)]-[0][ int[y = ln(0)]-[0][ e^{(-1)·( x^{n}+y^{n} )} ]d[y] ]d[x] = (1/n!)^{2}

Demostración:

e^{(-1)·( x^{n}+y^{n} )} [o(x || y)o] ( x /o(x || y)o/ x^{n} ) [o(x || y)o] ( y /o(x || y)o/ y^{n} )

Teorema:

int[x = 0]-[ln(oo)][ e^{(-1)·x^{2}} ]d[x] = (1/2!)

Demostración:

int[w = 0]-[2pi][ int[r = 0]-[oo][ e^{(-1)·r^{2}}·(1/4)·2r ]d[r] ]d[w] = (pi/2)

(-1)·e^{(-1)·r^{2}}·(1/4)·w = (-1)·e^{(-1)·( x^{2}+y^{2} )}·(1/4)·arc-tan(x/y)

arc-tan(0/oo)+(-1)·arc-tan(0/(-oo)) = 2pi

arc-tan(oo/(-oo)) = arc-tan(oo·(-0)) = arc-tan(oo·0) = arc-tan(oo/oo)

e^{(-1)·( x^{2}+y^{2} )}·(1/4)·8pi = (pi/2)

4 veces el cuadrante de la exponencial y valores convergentes de arco-tangente.


Teorema:

int[x = 0]-[pi][ e^{(-1)·( sin(x) )^{n}} ]d[x] = (2/n!)

Demostración:

int[x = 0]-[pi][ e^{(-1)·( sin(x) )^{n}}·( 1/d_{x}[sin(x)] ) ]d[sin(x)] = ...

... (-1)·e^{(-1)·( sin(x) )^{n}} [o(sin(x))o] ( sin(x) /o(sin(x))o/ ( sin(x) )^{n} )·( 1/cos(x) )

Teorema:

int[x = (-1)·(pi/2)]-[(pi/2)][ e^{(-1)·( cos(x) )^{n}} ]d[x] = (2/n!)

Demostración:

int[x = (-1)·(pi/2)]-[(pi/2)][ e^{(-1)·( cos(x) )^{n}}·( 1/d_{x}[cos(x)] ) ]d[cos(x)] = ...

... e^{(-1)·( cos(x) )^{n}} [o(cos(x))o] ( cos(x) /o(cos(x))o/ ( cos(x) )^{n} )·( 1/sin(x) )


Teorema:

int[x = (-oo)]-[oo][ ln(x^{n}+1) ]d[x] = n·( ln(2)+pi·i )

Área positiva > 1 + Área negativa < 1 = a la integral impropia

Verificación del método de Euler por Hôpital-Garriga:

( ln(x^{n}+1)+(-1) )·(x^{n}+1) [o(x)o] ( x /o(x)o/ (x^{n}+1) ) = ...

( ln(x^{n}+1)+(-1) )·(w^{n}+1) [o(x)o] ( w /o(x)o/ (w^{n}+1) ) = ...

( ln(x^{n}+1)+(-1) ) [o(x)o] ( 1 /o(x)o/ 1 ) = [ ln(x^{n}+1)+(-1) ]_{x = (-oo)}^{x = oo}

Demostración:

Se define H(t) = int[x = (-oo)]-[oo][ ln( (xF(t))^{n}+1 ) ]d[x] ==>

d_{t}[H(t)] = f(t)·int[x = (-oo)]-[oo][ ( 1/( (xF(t))^{n}+1 ) )·n·( xF(t) )^{n+(-1)}·x ]d[x]

F(t) = x

d_{t}[H(t)] = d_{t}[x]·int[x = (-oo)]-[oo][ ( 1/(x^{2n}+1) )·nx^{2n+(-1)} ]d[x]

d_{t}[H(t)] = d_{t}[x]·(1/2)·( ln(oo^{2n}+1) )+(-1)·ln((-oo)^{2n}+1) )

d_{t}[H(t)] = d_{t}[x]·(1/2)·2n·( ln(oo)+(-1)·ln(oo)+pi·i ) = d_{t}[x]·n·( ln(2)+pi·i )

H(t) = x·n·( ln(2)+pi·i ) = F(t)·n·( ln(2)+pi·i )

H( F^{o(-1)}(1) ) = F( F^{o(-1)}(1) ) n·( ln(2)+pi·i ) = n·( ln(2)+pi·i )


Arte:

[En][ int[x = (-1)]-[1][ ( 1/(x^{n}+(-1)) ) ]d[x] = (2/n) ]

Exposición:

n = 0

Se define H(t) = int[x = (-1)]-[1][ ( 1/( (xF(t))^{n}+(-1) ) ) ]d[x] ==>

d_{t}[H(t)] = f(t)·int[x = (-1)]-[1][ (-1)·( 1/( (xF(t))^{n}+(-1) ) )^{2}·n·( xF(t) )^{n+(-1)}·x ]d[x]

F(t) = x

d_{t}[H(t)] = d_{t}[x]·int[x = (-1)]-[1][ (-1)·( 1/(x^{2n}+(-1)) )^{2}·nx^{2n+(-1)} ]d[x]

d_{t}[H(t)] = d_{t}[x]·(1/2)·( oo+(-oo) ) = d_{t}[x]·(1/2)

H(t) = x·(1/2) = F(t)·(1/2)

u(1) = m

v(m) = (4/n)

H( F^{o(-1)}(1) ) = F( F^{o(-1)}(1) )·(1/2) = (1/2)·u(1) = (1/2)·v(m) = (2/n)


Momento de inercia Wronskiano:

Ley:

Sea ( x = a·cos(ut) & y = b·sin(ut) ) ==>

M·int[ x·d_{t}[y]+(-y)·d_{t}[x] ]d[t] = M·ab·(ut)

Ley:

M·ab·(ut)·(1/2)·d_{t}[w]^{2} = E·H(w)

w(t) = Anti-[ ( int[ (ut) ]d[s] /o(s)o/ int[ H(s) ]d[s] )^{[o(s)o] (1/2)} ]-( ( (2/M)·(1/(ab) )·E )^{(1/2)}·t )

Ley:

Sea ( x = vt & y = g·(1/2)·t^{2} ) ==>

M·int[ x·d_{t}[y]+(-y)·d_{t}[x] ]d[t] = M·vg·(1/u)^{3}·(1/6)·(ut)^{3}

Ley:

M·vg·(1/u)^{3}·(ut)^{3}·(1/12)·d_{t}[w]^{2} = E·H(w)

w(t) = Anti-[ ( int[ (ut)^{3} ]d[s] /o(s)o/ int[ H(s) ]d[s] )^{[o(s)o] (1/2)} ]-( ...

... ( (12/M)·(1/(vg) )·u^{3}·E )^{(1/2)}·t )

Ley:

Sea ( x = vt & y = re^{ut+(-1)} ) ==>

M·int[ x·d_{t}[y]+(-y)·d_{t}[x] ]d[t] = M·vr·(1/u)·(ut+(-1))^{2}·er-h[2]( ut+(-1) )

Ley:

M·vr·(1/u)·(ut+(-1))^{2}·er-h[2]( ut+(-1) )·(1/2)·d_{t}[w]^{2} = E·H(w)

w(t) = Anti-[ ( int[ (ut+(-1))^{2}·er-h[2]( ut+(-1) ) ]d[s] /o(s)o/ int[ H(s) ]d[s] )^{[o(s)o] (1/2)} ]-( ...

... ( (2/M)·(1/(vr) )·uE )^{(1/2)}·t )

Ley:

Sea ( x = r·ln(ut) & y = vt ) ==>

M·int[ x·d_{t}[y]+(-y)·d_{t}[x] ]d[t] = M·vr·(1/u)·(ut)·( ln(ut)+(-2) )

Ley:

M·vr·(1/u)·(ut)·( ln(ut)+(-2) )·(1/2)·d_{t}[w]^{2} = E·H(w)

w(t) = Anti-[ ( int[ (ut)·( ln(ut)+(-2) ) ]d[s] /o(s)o/ int[ H(s) ]d[s] )^{[o(s)o] (1/2)} ]-( ...

... ( (2/M)·(1/(vr) )·uE )^{(1/2)}·t )


Ley:

Sea d_{t}[x] = ru·(ut+e)^{sin(ut+(pi/2))} ==>

d_{tt}^{2}[x] = ru^{2}·(ut+e)^{sin(ut+(pi/2))}·( cos(ut+(pi/2))·ln(ut+e)+sin(ut+(pi/2))·(1/(ut+e)) )

x(t) = r·(ut+e)^{sin(ut+(pi/2))} [o(ut)o] ( ut /o(ut)o/ sin(ut+(pi/2))·ln(ut+e) )

x(0/u) = re

d_{t}[x(0/u)] = rue

d_{tt}^{2}[x(0/u)] = ru^{2}

Deducción:

ln(f(z)) = ln(g(z)^{h(z)}) = h(z)·ln(g(z))

d_{z}[f(z)] = f(z)·d_{z}[ h(z)·ln(g(z)) ]


Ley:

La verdad implica la felicidad.

La falsedad implica el sufrimiento.

Deducción:

Creer-se una verdad es jugada ganadora:

F(n,1) = n·1+(n+1) = 2n+1

Creer-se una falsedad es jugada perdedora:

F(n,0) = n·0+(n+0) = n

n [< n+n = 2n < 2n+1


Ley:

Un heterosexual que es,

no puede ser homosexual que no es.

Un homosexual que no es,

no puede ser heterosexual que es.


I havere-kate-kute maket-tikaletch-tuted a coment saksahuaketch-kán,

of yu tenotitch-lán.

Yu havere-kate-kute maket-tikaletch-tuted a coment saksahuaketch-kán,

of me tenotitch-lán.


El American-Quetchua tiene 7 dialectos:

Centro americano:

-tikaletch-kal

Sur americano hawsnutch:

-tikaletch-tate

-tikaletch-tute

-tikalet-kazhe

-tikalet-kuzhe

gwzenen plana

-tikalet-huw

yuhened plana

-tikalet-shuw

yushened plana


Ley:

Sea I_{c}·(1/2)·d_{t}[w]^{2} = E·H(w) ==>

Si d[ d[I_{c}] ] = Mrv·d[w]d[t] ==>

w(t) = Anti-[ ( ( (1/2)·s^{2} [o(s)o] int[ (ut) ]d[s] ) /o(s)o/ int[ H(s) ]d[s] )^{[o(s)o] (1/2)} ]-( ...

... ( (2/M)·(1/(rv))·uE )^{(1/2)}·t )

Ley:

Sea I_{c}·(1/2)·d_{t}[w]^{2} = E·H(w) ==>

Si d[ d[I_{c}] ] = Mrgt·d[w]d[t] ==>

w(t) = Anti-[ ( ( (1/2)·s^{2} [o(s)o] int[ (ut)^{2} ]d[s] ) /o(s)o/ int[ H(s) ]d[s] )^{[o(s)o] (1/2)} ]-( ...

... ( (4/M)·(1/(rg))·E )^{(1/2)}·ut )

No hay comentarios:

Publicar un comentario