viernes, 8 de marzo de 2024

topología-algebraica-medida y homología-algebraica y topología y Álgebra-polinomios

Definición: [ de medida exterior ]

M( [ || ]-[k = 1]-[n][ A_{k} ] ) [< sum[k = 1]-[n][ M(A_{k}) ]

M( [&]-[k = 1]-[n][ ¬A_{k} ] ) >] sum[k = 1]-[n][ M(¬A_{k}) ]



Teorema:

M(0) >] 0

Demostración:

M(A) = M(A [ || ] 0) [< M(A)+M(0)

0 [< M(0)

Teorema:

M(E) [< 0

Demostración:

M(A) = M(A [&] E) >] M(A)+M(E)

0 >] M(E)



Definición: [ de medida exterior de recubrimiento ]

M(A) = min{ sum[k = 1]-[n][ M(E_{k}) ] : A [<< [ || ]-[k = 1]-[n][ E_{k} ] }

M(¬A) = max{ sum[k = 1]-[n][ M(¬E_{k}) ] : ¬A >>] [&]-[k = 1]-[n][ ¬E_{k} ] }



Teorema:

M(0) >] 0

Demostración

A [<< A = A [ || ] 0 

M(A) = min{ M(A)+M(0) } [< M(A)+M(0)

Teorema:

M(E) [< 0

Demostración

¬A >>] ¬A = ¬A [&] E 

M(A) = max{ M(A)+M(E) } >] M(A)+M(E)



Teorema:

M( [ || ]-[k = 1]-[n][ A_{k} ] ) [< sum[k = 1]-[n][ M(A_{k}) ]

Demostración:

A = [ || ]-[k = 1]-[n][ A_{k} ] 

A [<< [ || ]-[k = 1]-[n][ A_{k} ] 

M(A) = min{ sum[k = 1]-[n][ M(A_{k}) ] } [< sum[k = 1]-[n][ M(A_{k}) ]

Teorema:

M( [&]-[k = 1]-[n][ ¬A_{k} ] ) >] sum[k = 1]-[n][ M(¬A_{k}) ]

Demostración:

¬A = [&]-[k = 1]-[n][ ¬A_{k} ] 

¬A >>] [&]-[k = 1]-[n][ ¬A_{k} ] 

M(¬A) = max{ sum[k = 1]-[n][ M(¬A_{k}) ] } >] sum[k = 1]-[n][ M(¬A_{k}) ]



Teorema: [ de existencia de la conexión cruzada de homologías ]

Sean ( A_{n} = [ f_{n}: a_{n} ---> a_{n+1} ]_{n} & B_{m} = [ g_{m}: b_{m} ---> b_{m+1} ]_{m} )

[EP][EQ][ P(a_{n+1}) = b_{m} & Q(a_{n}) = b_{m+1} ]

[Eu][Ev][ u(a_{m+1}) = a_{n} & v(b_{m}) = a_{n+1} ]

Demostración:

Se define P(a_{k}) = b_{m+k+(-1)·(n+1)}

Se define Q(a_{k}) = b_{(m+1)+k+(-n)}

Teorema: [ de existencia de la conexión paralela de homologías ]

Sean ( A_{n} = [ f_{n}: a_{n} ---> a_{n+1} ]_{n} & B_{m} = [ g_{m}: b_{m} ---> b_{m+1} ]_{m} )

[EL][ L(a_{n}) = b_{m} & L(a_{n+1}) = b_{m+1} ]

[EH][ H(a_{m}) = a_{n} & H(b_{m+1}) = a_{n+1} ]

Demostración:

Se define L(a_{k}) = b_{m+k+(-n)}



Definición: [ de trapecio de homología ]

Sea A_{n} = [ f_{n}: a_{n} ---> a_{n+1} ]_{n}

[Eh_{1}]...[Eh_{m}][ ( h_{m} o...(m)...o h_{1} )(a_{n}) = a_{n+1} ]

Teorema:

Sea A_{n} = [ f_{n}: a_{n} ---> a_{n+1} ]_{n}

[Eh][ ( h o...(m)...o h )(a_{n}) = a_{n+1} ]

Demostración:

Se define h(a_{k}) = a_{k+(1/m)}

Teorema: [ del triángulo de homología ]

Sea A_{n} = [ f_{n}: a_{n} ---> a_{n+1} ]_{n}

[Eh_{1}][Eh_{2}][ ( h_{2} o h_{1} )(a_{n}) = a_{n+1} ]

Demostración:

Se define h_{1}(a_{k}) = a_{k+(1/m)}

Se define h_{2}(a_{k}) = a_{k+1+(-1)·(1/m)}



Teorema:

Sea A_{n} = [ f_{n}: a_{n} ---> a_{n+1} ]_{n}

[Eh_{1}][Eh_{2}][ ( h_{2} o h_{1} o ...(k)...o h_{2} o h_{1} )(a_{n}) = a_{n+1} ]

Demostración:

Examen de homología algebraica.

Teorema:

Sea A_{n} = [ f_{n}: a_{n} ---> a_{n+1} ]_{n}

[Eh_{1}][Eh_{2}][ ( h_{2} o ...(k)... o h_{2} o h_{1} )(a_{n}) = a_{n+1} ]

Demostración:

Examen de homología algebraica.



Teorema: [ de compactificación de homología ]

Sea A_{n} = [ f_{n}: a_{n} ---> a_{n+1} ]_{n}

[EB_{n}][ B_{n} = [ g_{n}: b_{[r]_{m}} ---> b_{[r+1]_{m}} ]_{n} & ...

... A_{n} y B_{n} están conectadas paralelamente ]

Demostración:

Sea n = mk+r ==> ...

Se define L(a_{mk+r}) = b_{[r]_{m}}

Se define H(b_{[r]_{m}}) = a_{mk+r}



Teorema:

Sea f(x) = sum[k = 0]-[oo][ ( 1/( mk+(m+(-1)) )! )·x^{mk+(m+(-1))} ]

Sea A_{n} = [ f_{n} : d_{x...x}^{n}[f(x)] ---> d_{x...x}^{n+1}[f(x)] ]_{n}

[EB_{n}][ B_{n} = [ g_{n}: b_{[r]_{m}} ---> b_{[r+1]_{m}} ]_{n} & ...

... A_{n} y B_{n} están conectadas paralelamente ]

Demostración:

Se define L( sum[k = 0]-[oo][ ( 1/(mk+r)! )·x^{mk+r} ] ) = ...

... (1/oo)·sum[k = 0]-[oo][ ( 1/[r]_{m}! )·x^{[r]_{m}} ] = ( 1/[r]_{m}! )·x^{[r]_{m}}

B_{n} = [ g_{mk+r}: b_{[r]_{m}} ---> b_{[r+(-1)]_{m}} ]_{n}

g_{mk}: b_{[0]_{m}} ---> b_{[m+(-1)]_{m}}



Teorema:

Sea f(x) = sum[k = 0]-[oo][ (-1)^{k}·( 1/( mk+(m+(-1)) )! )·x^{mk+(m+(-1))} ]

Sea A_{n} = [ f_{n} : d_{x...x}^{n}[f(x)] ---> d_{x...x}^{n+1}[f(x)] ]_{n}

[EB_{n}][EC_{n}][ B_{n} = [ g_{n}: b_{[r]_{m}} ---> b_{[r+1]_{m}} ]_{n} & ...

... C_{n} = [ h_{n}: c_{[r]_{m}} ---> c_{[r+1]_{m}} ]_{n} & ...

... A_{n} y ( B_{n} [ || ] C_{n} ) están conectadas paralelamente ]

Demostración:

Se define L( sum[k = 0]-[oo][ (-1)^{k}·( 1/(mk+r)! )·x^{mk+r} ] ) = ...

... sum[k = 0]-[oo][ (-1)^{k}·( 1/[r]_{m}! )·x^{[r]_{m}} ] = ( 1/[r]_{m}! )·x^{[r]_{m}}

B_{n} = [ g_{mk+r}: b_{[r]_{m}} ---> b_{[r+(-1)]_{m}} ]_{n}

g_{mk}: b_{[0]_{m}} ---> b_{[m+(-1)]_{m}}

Sea k = p+1 ==>

Se define L( sum[p = 0]-[oo][ (-1)^{p+1}·( 1/(mp+r)! )·x^{mp+r} ] ) = ...

... sum[p = 0]-[oo][ (-1)^{p+1}·( 1/[r]_{m}! )·x^{[r]_{m}} ] = (-1)·( 1/[r]_{m}! )·x^{[r]_{m}}

C_{n} = [ h_{mk+r}: c_{[r]_{m}} ---> c_{[r+(-1)]_{m}} ]_{n}

h_{mk}: c_{[0]_{m}} ---> c_{[m+(-1)]_{m}}



Teorema:

Sea f(x) = sinh(x)

Sea A_{n} = [ f_{n} : d_{x...x}^{n}[f(x)] ---> d_{x...x}^{n+1}[f(x)] ]_{n}

[EB_{n}][ B_{n} = [ g_{n}: b_{[r]_{m}} ---> b_{[r+1]_{m}} ]_{n} & ...

... A_{n} y B_{n} están conectadas paralelamente ]

Demostración:

Examen de homología algebraica.

Teorema:

Sea f(x) = sin(x)

Sea A_{n} = [ f_{n} : d_{x...x}^{n}[f(x)] ---> d_{x...x}^{n+1}[f(x)] ]_{n}

[EB_{n}][EC_{n}][ B_{n} = [ g_{n}: b_{[r]_{m}} ---> b_{[r+1]_{m}} ]_{n} & ...

... C_{n} = [ h_{n}: c_{[r]_{m}} ---> c_{[r+1]_{m}} ]_{n} & ...

... A_{n} y ( B_{n} [ || ] C_{n} ) están conectadas paralelamente ]

Demostración:

Examen de homología algebraica.



Teorema: 

Sea A_{n} = [ f_{n} : ( (mk)!/d_{x...x}^{n}[x^{mk}] ) ---> ( (mk)!/d_{x...x}^{n+1}[x^{mk}] ) ]_{n}

[EB_{n}][ B_{n} = [ g_{n}: b_{[r]_{m}} ---> b_{[r+1]_{m}} ]_{n} & ...

... A_{n} y B_{n} están conectadas paralelamente ]

Demostración:

Se define L( (mk+(-r))!/x^{mk+(-r)} ) = ([m+(-r)]_{m})!/x^{[m+(-r)]_{m}}

B_{n} = [ g_{mk+(-r)}: b_{[m+(-r)]_{m}} ---> b_{[m+(-1)+(-r)]_{m}} ]_{n}

g_{mk+(-1)·(m+(-1))}: b_{[1]_{m}} ---> b_{[m]_{m}}



Teorema:

Sea A_{n} = [ A_{1} = {a_{1}} & f_{n} : A_{n} ---> A_{n} [ || ] {a_{n+1}} ]_{n}

Sea B_{n} = [ ¬A_{1} = }a_{1}{ & g_{n} : ¬A_{n} ---> ¬A_{n} [&] }a_{n+1}{ ]_{n}

A_{n} y B_{n} están conectadas paralelamente.

Demostración:

Se define L(A) = ¬A



Axioma:

A [&] }x{ = A

{ x : x != x } [&] }x{ = { x : x != x }

Teorema:

¬A [ || ] {x} = ¬A

{ x : x = x } [ || ] {x} = { x : x = x }



Teorema:

Sea A_{n} = [ A_{1} = {a_{1}} & f_{n} : A_{n} ---> A_{n} [ || ] {a_{n+1}} ]_{n}

Sea B_{n} = [ ¬A_{1} = }a_{1}{ & g_{n} : ¬A_{n} ---> ¬A_{n} [&] }a_{n+1}{ ]_{n}

A_{n} y B_{n} están conectadas cruzadamente.

Demostración:

Se define P(A) = ¬( A [&] }a_{1}{ )

Se define Q(A) = ¬( A [ || ] {a_{1}} )



Teorema:

max{x,max{y,z}} = max{max{x,y},z}

min{x,min{y,z}} = min{min{x,y},z}

Demostración:

Sea a = max{x,max{y,z}} ==>

a >] x & a >] max{y,z}

a >] x & ( a >] y & a >] z )

( a >] x & a >] y ) & a >] z 

a >] max{x,y} & a >] z

a = max{max{x,y},z}

Teorema:

max{min{x,y},mim{x,z}} = min{x,max{y,z}}

min{max{x,y},max{x,z}} = max{x,min{y,z}}

Demostración:

Sea a = max{min{x,y},mim{x,z}}

a >] min{x,y} & a >] min{x,z}

( a >] x || a >] y ) & ( a >] x || a >] z )

a >] x || ( a >] y & a >] z )

a >] x || a >] max{y,z}

a = min{x,max{y,z}}



Teorema:

Si [Ak][ 1 [< k [< n ==> p^{k} € E ] ==> mcm{p^{n_{k}}} € E

Si [Ak][ 1 [< k [< n ==> p^{k} € E ] ==> mcd{p^{n_{k}}} € E

Demostración:

mcm{p^{n_{k}}} = p^{max{n_{k}}} € E

mcd{p^{n_{k}}} = p^{min{n_{k}}} € E



Teorema:

mcm{ p^{k},mcm{p^{n},p^{m}} } = mcm{ mcm{p^{k},p^{n}},p^{m} }

mcd{ p^{k},mcd{p^{n},p^{m}} } = mcd{ mcd{p^{k},p^{n}},p^{m} }



Teorema:

mcm{ mcd{p^{k},p^{n_{k}}},mcd{p^{k},p^{m_{k}}} } = ...

... mcd{ p^{k},mcm{p^{n_{k}},p^{m_{k}}} }

mcd{ mcm{p^{k},p^{n_{k}}},mcm{p^{k},p^{m_{k}}} } = ...

... mcm{ p^{k},mcd{p^{n_{k}},p^{m_{k}}} }

Demostración:

mcm{ mcd{p^{k},p^{n_{k}}},mcd{p^{k},p^{m_{k}}} } = ...

... mcm{ p^{min{k,n_{k}}}},p^{min{k,m_{k}}} } = ...

... p^{max{ min{k,n_{k}},min{k,m_{k}} }}

mcd{ p^{k},mcm{p^{n_{k}},p^{m_{k}}} } = mcd{p^{k},p^{max{n_{k},m_{k}}}} = 

... p^{min{ k,max{n_{k},m_{k}} }}



Teorema:

Si [Ak][ 1 [< k [< n ==> mp^{k} € E ] ==> mcm{mp^{n_{k}}} € E

Si [Ak][ 1 [< k [< n ==> mp^{k} € E ] ==> mcd{mp^{n_{k}}} € E

Demostración:

Examen de topología.



Definición: [ de medida exterior binaria ]

M(A) = min{ (1/k) : A [<< [ || ]-[k = 1]-[n][ A_{k} ] }

M(¬A) = max{ (-1)·(1/k) : ¬A >>] [&]-[k = 1]-[n][ ¬A_{k} ] }



Teorema:

M( [ || ]-[k = 1]-[n][ A_{k} ] ) [< sum[k = 1]-[n][ M(A_{k}) ]

Demostración:

M( [ || ]-[k = 1]-[n][ A_{k} ] ) = M(A) = min{(1/k)} [< 1+...(n)...+(1/n) = ...

... sum[k = 1]-[n][ M(A_{k}) ]

Teorema:

M( [&]-[k = 1]-[n][ ¬A_{k} ] ) >] sum[k = 1]-[n][ M(¬A_{k}) ]

Demostración:

M( [&]-[k = 1]-[n][ ¬A_{k} ] ) = M(¬A) = max{(-1)·(1/k)} >] (-1)+...(n)...+(-1)·(1/n) = ...

... sum[k = 1]-[n][ M(¬A_{k}) ]



Teorema:

M(0) >] 0

Demostración:

M(0) = min{(1/k)} = 0

M(0) >] 0 & M(0) [< 0 

Teorema:

M(E) [< 0

Demostración:

M(E) = max{(-1)·(1/k)} = 0

M(E) [< 0 & M(E) >] 0



Definición: [ de medida exterior entera ]

M(A) = min{ k : A [<< [ || ]-[k = 1]-[n][ A_{k} ] }

M(¬A) = max{ (-k) : ¬A >>] [&]-[k = 1]-[n][ ¬A_{k} ] }



Teorema:

M( [ || ]-[k = 1]-[n][ A_{k} ] ) [< sum[k = 1]-[n][ M(A_{k}) ]

Demostración:

M( [ || ]-[k = 1]-[n][ A_{k} ] ) = M(A) = min{k} [< 1+...(n)...+n = ...

... sum[k = 1]-[n][ M(A_{k}) ]

Teorema:

M( [&]-[k = 1]-[n][ ¬A_{k} ] ) >] sum[k = 1]-[n][ M(¬A_{k}) ]

Demostración:

M( [&]-[k = 1]-[n][ ¬A_{k} ] ) = M(¬A) = max{(-k)} >] (-1)+...(n)...+(-n) = ...

... sum[k = 1]-[n][ M(¬A_{k}) ]



Teorema:

M(0) >] 0

Demostración:

M(0) = min{k} = 1

M(0) = 1 >] 0 

Teorema:

M(E) [< 0

Demostración:

M(E) = max{(-k)} = (-1)

M(E) = (-1) [< 0



Definición: [ de medida exterior binaria desplazada ]

M(A) = min{ p+(1/k) : A [<< [ || ]-[k = 1]-[n][ A_{k} ] }

M(¬A) = max{ (-p)+(-1)·(1/k) : ¬A >>] [&]-[k = 1]-[n][ ¬A_{k} ] }

Demostrad que es una medida exterior.

Definición: [ de medida exterior entera desplazada ]

M(A) = min{ p+k : A [<< [ || ]-[k = 1]-[n][ A_{k} ] }

M(¬A) = max{ (-p)+(-k) : ¬A >>] [&]-[k = 1]-[n][ ¬A_{k} ] }

Demostrad que es una medida exterior.



Teorema:

Si f(x) = min{ z : [Ey][ y > 0 & z = | xy+(-a) | ] } ==> | f(a) | = 0

Si f(x) = max{ z : [Ey][ y < 0 & z = | ( xy+(-a) )·i | ] } ==> | f(-a)·i | = 0

Demostración:

Sea y = 1 ==>

f(x) = min{ z : [Ey][ y > 0 & z = | xy+(-a) | ] } [< | xy+(-a) | = | x+(-a) |

0 [< | f(a) | [< | a+(-a) | = 0



Ley:

No es interesante para joder un fiel,

porque no hay reverso tenebroso,

y hay condenación.

Es interesante para joder un infiel,

porque hay el reverso tenebroso,

y no hay condenación.


Ley:

Es aburrido en el Mal,

no tener reverso tenebroso,

de joder a fieles,

porque se tiene que amar.

Es interesante en el Mal,

tener reverso tenebroso,

de joder a infieles,

porque no se tiene que amar.

Anexo:

Tendrán que amar a la próximo como a si mismo con la familia,

cocinar, lavar o vatchnar a comprar.

para tener amor.

Tendrán que amar al prójimo como no a si mismo,

estudiar y der o datchnar la energía al prójimo, 

para tener amor.

Por esto es aburrido en el Mal joder a un fiel,

porque se tiene que amar,

y no puedes ser un señor no estudiando.

Por eso es interesante en el Mal joder a un infiel,

porque no se tiene que amar,

y puedes ser un señor no estudiando.



Teorema: [ de Cardano-Tartaglia ]

Si x^{3}+ax+b = 0 ==> [Ep][Eq][ u^{6}+pu^{3}+q = 0 & v^{6}+pv^{3}+q = 0 & x = u+v ]

Demostración:

u^{3}+v^{3}+b = 0

v^{3}+u^{3}+b = 0

3uv·(u+v) = (-a)·(u+v)

Se define p = b

Se define q = (-1)·(1/27)·a^{3}

Teorema:

x^{3}+ax+b = (x+(-1)·(u+v))·(x+(-j))·(x+(-k))

Demostración:

x^{3}+ax+b = (x+(-1)·(u+v))·( x^{2}+(u+v)·x+( a+(u+v)^{2} ) )



Teorema: [ de Cardano-Ferrari de números reales ]

Si x^{4}+ax^{2}+bx+c = 0 ==> ...

... [Ep][ u^{3}+pu+b = 0 & v^{3}+pv+b = 0 & ( x = u+k || x = v+j ) ]

Demostración:

Sea x = u+v ==>

u^{4}+(a+w)·u^{2}+bu = 0

v^{4}+(a+w)·v^{2}+bv = 0

4·(uv)·( u^{2}+v^{2} ) = w·( u^{2}+v^{2} )

6·(uv)^{2}+2a·(uv)+c = 0

Se define p = a+w

Teorema: [ de Cardano-Ferrari de números imaginarios ]

Si x^{4}+ax^{2}+bx+c = 0 ==> ...

... [Ep][ u^{3}+(-p)·u+bi = 0 & v^{3}+(-p)·v+bi = 0 & ( x = ui+ki || x = vi+ji ) ]

Demostración:

Sea x = ui+vi ==>

u^{4}+(-1)·(a+w)·u^{2}+bui = 0

v^{4}+(-1)·(a+w)·v^{2}+bvi = 0

4i·(uv)·( u^{2}+v^{2} ) = w·( u^{2}+v^{2} )

(-6)·(uv)^{2}+2ai·(uv)+c = 0

Se define p = a+w

Teorema:

x^{4}+ax^{2}+bx+c = (x+(-1)·(u+j))·(x+(-1)·(v+k))·(x+(-i)·(u+j))·(x+(-i)·(v+k))


Teorema: [ de Cardano quíntico ]

Si x^{5}+ax^{3}+bx^{2}+cx+d = 0 ==> ...

... [Ep][Eq][ u^{4}+pu^{2}+bu+q = 0 & v^{4}+pv^{2}+bv+q = 0 & ( x = 2u+j+k || x = 2vi+ji+ki ) ]

Demostración:

Sea x = u+v ==>

u^{5}+(a+m)·u^{3}+bu^{2}+(c+w)·u = 0

v^{5}+(a+m)·v^{3}+bv^{2}+(c+w)·v = 0

5·(uv)·( u^{3}+v^{3} ) = m·( u^{3}+v^{3} )

10·(uv)^{2}·(u+v)+3a·(uv)·(u+v) = w·(u+v)

2b·(uv)+d = 0

Se define p = a+m

Se define q = c+w



Teorema:

x^{5}+ax^{3}+bx^{2}+cx+d = ( x+(-u) )·( x+(-v) )·...

... ( x^{3}+( u+v )·x^{2}+( ( a+(-1)·(uv) )+( u+v )^{2} )·x+...

... ( b+(-1)·( a·( u+v )+( u+v )^{3} ) ) = ...

Conjetura:

( a·( u+v )+( u+v )^{3} )+(uv) )·2x^{2} = 0

( (-b)·( u+v )+( a·( u+v )^{2}+( u+v )^{4} )·x = ...

... ( c+(-1)·( a·(uv)+(uv)^{2} ) )·x

( b+( a·( u+v )+( u+v )^{3} )·(uv) = d

(uv) = (1/2)·( b+( b^{2}+(-4)·d )^{(1/2)} )

Demostración:

( ( x^{5}+ax^{3}+bx^{2}+cx+d ) / ( x^{2}+(-1)·( u+v )·x+(uv) ) ) = ...

... x^{3} | ...

... ( u+v )·x^{4}+( a+(-1)·(uv) )·x^{3}+bx^{2}+cx+d ...

... 

... ( u+v )·x^{2} | ...

... ( ( a+(-1)·(uv) )+( u+v )^{2} )·x^{3}+( b+(-1)·( u+v )·(uv) )·x^{2}+cx+d

... 

... ( a+(-1)·(uv)+( u+v )^{2} )·x | ...

... ( b+(-1)·( u+v )·(uv) )+(-1)·( a·( u+v )+(-1)·(uv)·( u+v )+( u+v )^{3} ) )·x^{2}+...

... ( c+(-1)·( a·(uv)+(-1)·(uv)^{2}+( u+v )^{2} )·(uv) ) )·x+d

...

... ( b+(-1)·(uv)·( u+v ) )+...

... (-1)·( a·( u+v )+(-1)·(uv)·( u+v )+( u+v )^{3} )

Teorema:

x^{5}+ax^{3}+bx^{2}+cx+d = ...

... ( x^{2}+...

... (-1)·...

... ( ( c+(-a)·( (1/2)·( b+( b^{2}+(-4)·d )^{(1/2)} )+(-1)·( (1/4)·( b+( b^{2}+(-4)·d )^{(1/2)} )^{2} ) )...

... /...

... ( (-1)·( (3/2)·b+(1/2)·( b^{2}+(-4)·d )^{(1/2)} ) ) )·x+...

... (1/2)·( b+( b^{2}+(-4)·d )^{(1/2)} ) ...

... )

... ( x^{3}+...

... ( ( c+(-a)·( (1/2)·( b+( b^{2}+(-4)·d )^{(1/2)} )+(-1)·( (1/4)·( b+( b^{2}+(-4)·d )^{(1/2)} )^{2} ) )...

... /...

... ( (-1)·( (3/2)·b+(1/2)·( b^{2}+(-4)·d )^{(1/2)} ) ) ...

... )·x^{2}...

... +...

... ( ( a+(-1)·( (1/2)·( b+( b^{2}+(-4)·d )^{(1/2)} ) ) )+...

... ( ...

... ( c+(-a)·( (1/2)·( b+( b^{2}+(-4)·d )^{(1/2)} )+(-1)·( (1/4)·( b+( b^{2}+(-4)·d )^{(1/2)} )^{2} ) )...

... /...

... ( (-1)·( (3/2)·b+(1/2)·( b^{2}+(-4)·d )^{(1/2)} ) ) ...

... )^{2}...

... )·x...

... +...

... ( b+(1/2)·( b+( b^{2}+(-4)·d )^{(1/2)} ) ) ...

... )



Teorema:

[Ea][Eb][ x^{5}+2x^{3}+3x^{2}+5x+4 = (x+(-a))·(x+(-b))·P_{3}(x) ]

Demostración:

Examen de Álgebra I.

Teorema: [ de Cardano síxtico ]

Si x^{6}+ax^{4}+bx^{3}+cx^{2}+dx+h = 0 ==> ...

... [Ep][Eq][Ez][Es][ ...

... u^{5}+pu^{3}+qu^{2}+zu+s = (y+(-u))·(y+(-v))·P_{3}(j) = 0 & x = u+j & ...

... v^{5}+pv^{3}+qv^{2}+zv+s = (y+(-u))·(y+(-v))·P_{3}(k) = 0 & x = v+k ]



Teorema: [ de Galois ]

Sea n >] 5 ==>

P_{n}(x) = (x+(-1)·a_{1})·...·(x+(-1)·a_{n}) <==> ...

... [Ek][ 1 [< k [< n & P_{n}(a_{k}) no es resoluble por Cardano ni cuadrática ]

Demostración:

x^{n}+a_{n+(-2)}·x^{n+(-2)}+...+a_{0} = ...

... (x+(-a))·( x^{n+(-1)}+ax^{n+(-2)}+Q(x) )

P_{3}(x) = (x+(-a))·( x^{2}+ax+c )

x^{n}+a_{n+(-2)}·x^{n+(-2)}+...+a_{0} = ...

... (x^{2}+(-1)·(u+v)·x+uv)·( x^{n+(-2)}+(u+v)·x^{n+(-3)}+Q(x) )

P_{4}(x) = (x^{2}+(-1)·(u+v)·x+uv)·( x^{2}+(u+v)·x+d )

x^{n} = x·x^{n+(-1)} punto fijo de la división

ax^{n+(-1)} = x·ax^{n+(-2)} punto fijo de la división

ax^{n+(-2)} = 0 <==> a = 0

Sea P_{n}(x) = x·P_{n+(-1)}(x) ==>

P_{n+(-1)}(x) es resoluble por Cardano <==> P_{n}(x) es resoluble por Cardano

Sea P_{n}(x) = (x+(-a))·P_{n+(-1)}(x) ==>

P_{n+(-1)}(x) no es resoluble por Cardano <==> P_{n}(x) es resoluble por cardano.



Teorema:

Si n = 5 ==> ...

... P_{5}(x) = (x+(-u))·(x+(-v))·P_{3}(x) & ( P_{3}(x) = x^{3}+ax^{2}+bx+c & a != 0 )



Teorema:

{ < k,f(k) > : [Ak][ 1 [< k [< n ==> f(k) = k ] } es irresoluble por Cardano-Galois <==> n >] 5

Demostración:

f(a_{f(k)}·x^{f(k)}) = f(a_{k}·x^{k}) = x·a_{k}·x^{k+(-1)} = x·a_{f(k)}·x^{f(k)+(-1)}



Teorema: [ de virus de Church ]

a_{k} = ( a_{0} )^{m^{k}} es computablemente irresoluble <==> n >] 5

a_{k} = ( a_{0} )^{m^{(-k)}} es computablemente irresoluble <==> n >] 5

Demostración:

a_{f(k)} = a_{k} = ( a_{0} )^{m^{k}} = ( a_{0} )^{m^{f(k)}}

a_{0} = a_{0}

a_{f(k)} = a_{k} = ( a_{0} )^{m^{(-k)}} = ( a_{0} )^{m^{(-1)·f(k)}}

a_{0} = a_{0}

Anexo:

No penséis está sucesión del virus de Church,

porque podéis morir y no son infieles a los que matáis.

Teorema: [ de Turing ]

a_{k} = kx es computablemente resoluble

Demostración:

a_{0} = 0

Teorema: [ de Turing ]

a_{k} = x^{k} es computablemente resoluble

Demostración:

a_{0} = 1

No hay comentarios:

Publicar un comentario