Teorema:
lim[n = oo][ int[x = 0]-[n][ ( 1+(x/n) )^{n}·e^{(-1)·2x} ]d[x] ] = 1
Teorema:
lim[n = oo][ int[x = 0]-[n][ ( 1+(-1)·( (2x)/n ) )^{n}·e^{x} ]d[x] ] = 1
Teorema:
lim[n = oo][ int[x = 0]-[n][ ( 1+(1/p)·(x/n) )^{n}·e^{(-1)·( 1+(1/p) )·x} ]d[x] ] = 1
Teorema:
lim[n = oo][ int[x = 0]-[n][ ( 1+(-1)·(1/p)·(x/n) )^{n}·e^{( (-1)+(1/p) )·x} ]d[x] ] = 1
Teorema:
lim[n = oo][ int[x = 0]-[ln(n^{m+1})][ ( nx^{m}/(1+n) )·e^{(-x)} ]d[x] ] = m!
Teorema:
lim[n = oo][ int[x = 0]-[ln(n^{(1/m)+1})][ ( nx^{(1/m)}/(1+n) )·e^{(-x)} ]d[x] ] = m
Teorema de Hôpital-Garriga:
Teorema:
Si lim[x = 0][ g(x) ] = 0 ==>
lim[x = 0][ ( f(x) /o(x)o/ g(x) ) ] = lim[x = 0][ ( f(x) /o(x)o/ d_{x}[g(x)] )·(1/d[x]) ]
Si lim[x = oo][ g(x) ] = oo ==>
lim[x = oo][ ( f(x) /o(x)o/ g(x) ) ] = lim[x = oo][ ( f(x) /o(x)o/ d_{x}[g(x)] )·d[x] ]
Demostración:
g(x) = 0
lim[h = 0][ g(x+h)+(-1)·g(x) ] = lim[h = 0][ g(x+h)+(-0) ] = g(x)
g(x) = oo
lim[h = 0][ (1/h)^{2}·( g(x+h)+(-1)·g(x) ) ] = oo·d_{x}[g(x)] = g(x)
Teorema: [ de la integral de Euler ]
Sea n >] 1 ==>
int[x = 0]-[oo][ e^{(-1)·x^{n}} ]d[x] = (-1)·(0/n!)+(1/n!) = (1/n!)
Teorema: [ de la integral de Euler-Garriga ]
Sea n >] 1 ==>
int[x = 0]-[oo][ ( 1/(1+x^{2n}) ) ]d[x] = (pi/2)·(1/n!)+(-1)·( 0·(1/n!) ) = (pi/2)·(1/n!)
Definición: [ medida de densidad-integral ]
M( A,f(x) ) = A·int[ f(x) ]d[x]
M( (-A),f(x) ) = (-A)·int[ f(x) ]d[x]
Teorema:
M( 0,f(x) ) = int[ f(x) ]d[x]·0
Teorema:
M( (-0),f(x) ) = (-1)·int[ f(x) ]d[x]·0
Teorema:
Si A [< B ==>
M( max{A,B},f(x) ) = M( A,f(x) )+M( B,f(x) )
<==>
M( A,f(x) ) = int[ f(x) ]d[x]·0
Demostración:
( B+(-B) )·int[ f(x) ]d[x] = int[ f(x) ]d[x]·0
Teorema:
Si (-B) [< (-A) ==>
M( min{(-A),(-B)},f(x) ) = M( (-A),f(x) )+M( (-B),f(x) )
<==>
M( (-A),f(x) ) = (-1)·int[ f(x) ]d[x]·0
Demostración:
(-1)·( B+(-B) )·int[ f(x) ]d[x] = (-1)·int[ f(x) ]d[x]·0
Definición: [ medida de densidad-diferencial ]
W( A,f(x) ) = A·d_{x}[ f(x) ]
W( (-A),f(x) ) = (-A)·d_{x}[ f(x) ]
Teorema:
W( 0,f(x) ) = d_{x}[ f(x) ]·0
Teorema:
W( (-0),f(x) ) = (-1)·d_{x}[ f(x) ]·0
Teorema:
Si A [< B ==>
W( max{A,B},f(x) ) = W( A,f(x) )+W( B,f(x) )
<==>
W( A,f(x) ) = d_{x}[ f(x) ]·0
Demostración:
( B+(-B) )·d_{x}[ f(x) ] = d_{x}[ f(x) ]·0
Teorema:
Si (-B) [< (-A) ==>
W( min{(-A),(-B)},f(x) ) = W( (-A),f(x) )+W( (-B),f(x) )
<==>
W( (-A),f(x) ) = (-1)·d_{x}[ f(x) ]·0
Demostración:
(-1)·( B+(-B) )·d_{x}[ f(x) ] = (-1)·d_{x}[ f(x) ]·0
Medidas Continuas:
Teorema:
[As][ s > 0 ==> [Ed][ d > 0 & ( Si H(B) < d ==> M( H(B),f(x) ) < s ) ] ]
[A(-s)][ (-s) < 0 ==> [E(-d)][ (-d) < 0 & ( Si H(-B) > (-d) ==> M( H(-B),f(x) ) > (-s) ) ] ]
Demostración:
Sea H(B) = A ==>
M( A,f(x) ) = A·int[ f(x) ]d[x] = int[ f(x) ]d[x]·0 < s
Sea H(-B) = (-A) ==>
M( (-A),f(x) ) = (-A)·int[ f(x) ]d[x] = (-1)·int[ f(x) ]d[x]·0 > (-s)
Teorema:
[As][ s > 0 ==> [Ed][ d > 0 & ( Si H(B) < d ==> W( H(B),f(x) ) < s ) ] ]
[A(-s)][ (-s) < 0 ==> [E(-d)][ (-d) < 0 & ( Si H(-B) > (-d) ==> W( H(-B),f(x) ) > (-s) ) ] ]
Demostración:
Sea H(B) = A ==>
W( A,f(x) ) = A·d_{x}[ f(x) ] = d_{x}[ f(x) ]·0 < s
Sea H(-B) = (-A) ==>
W( (-A),f(x) ) = (-A)·d_{x}[ f(x) ] = (-1)·d_{x}[ f(x) ]·0 > (-s)
Teorema:
Sea A = x ==> d_{x}[ M( x,f(x) ) ] = M( 1,f(x) )+M( x,d_{x}[f(x)] )
Sea A = (-x) ==> d_{x}[ M( (-x),f(x) ) ] = M( (-1),f(x) )+M( (-x),d_{x}[f(x)] )
Teorema:
Sea A = x ==> d_{x}[ W( x,f(x) ) ] = W( 1,f(x) )+W( x,d_{x}[f(x)] )
Sea A = (-x) ==> d_{x}[ W( (-x),f(x) ) ] = W( (-1),f(x) )+W( (-x),d_{x}[f(x)] )
Definición:
M( A,f(x_{1},...,x_{n}) ) = A·int-...[n]...-int[ f(x_{1},...,x_{n}) ]d[x_{1}]...d[x_{n}]
M( (-A),f(x_{1},...,x_{n}) ) = (-A)·int-...[n]...-int[ f(x_{1},...,x_{n}) ]d[x_{1}]...d[x_{n}]
Definición:
W( A,f(x_{1},...,x_{n}) ) = A·d_{x_{1}...x_{n}}^{n}[ f(x_{1},...,x_{n}) ]
W( (-A),f(x_{1},...,x_{n}) ) = (-A)·d_{x_{1}...x_{n}}^{n}[ f(x_{1},...,x_{n}) ]
Examen:
Demostrad que son medidas continuas.
Teorema:
Si [Ea][Ax][ 0 [< f(x) [< a ] ==> f(x) es continua a x = a.
Demostración:
| f(x)+(-1)·f(a) | [< | a+(-a)+h | [< |x+(-a)|+|h| < 2h < s
Teorema:
Si [Ea][Ax][ 1 [< ( f(x) )^{(1/n)} [< a ] ==> f(x) es continua en x = a.
Demostración:
| f(x)+(-1)·f(a) | [< | a^{n}+(-1)·a^{n}+h | = ...
... | a^{n}+(-1)·a^{n} |+|h| = |a+(-a)|·|P(a)|+|h| [< |x+(-a)|·|P(a)|+|h| = ( |P(a)|+1 )·h < s
Teorema:
Si [Ea][Ax][ 0 [< f(x) [< |a| ] ==> f(x) es continua en x = a.
Demostración:
| f(x)+(-1)·f(a) | [< | |a|+(-1)·|a|+h | = | |a|+(-1)·|a| |+|h| = |a+(-a)|+|h| [< |x+(-a)|+|h| = 2h < s
Teorema:
Si F(x) es continua ==> f(x) es integrable Newton-Riemann.
Demostración:
| int[x = x]-[x+h][ f(x) ]d[x] | = | F(x+h)+(-1)·F(x) | < s
Teorema:
Si F(x) es continua ==> f(x) es integrable Newton-Lebesgue.
Demostración:
| lim[n = oo][ int[x = x]-[x+h][ f_{n}(x) ]d[x] ] | = | lim[n = oo][ F_{n}(x+h)+(-1)·F_{n}(x) ] | = ...
... | F(x+h)+(-1)·F(x) | < s
Teorema:
Si F(x) es monótona ==> f(x) es integrable Newton-Riemann.
Demostración:
| int[x = x]-[x+h][ f(x) ]d[x] | = | F(x+h)+(-1)·F(x) | = 0+h = h < s
Teorema:
Si F(x) es monótona ==> f(x) es integrable Newton-Lebesgue.
Demostración:
| lim[n = oo][ int[x = x]-[x+h][ f_{n}(x) ]d[x] ] | = | lim[n = oo][ F_{n}(x+h)+(-1)·F_{n}(x) ] | = ...
... | F(x+h)+(-1)·F(x) | = 0+h = h < s
Definición: [ de integral continua de Newton-Leibniz ]
Sea S( f(x),x ) = a·f(x)·x ==>
f(x)·x = int[ S( f(x+h),(x+h) )+(-1)·S( f(x),x ) ]
[As][ s >0 ==> [Ed][ d > 0 & ( Si h < d ==> | S( f(x+h),(x+h) )+(-1)·S( f(x),x ) | < s ) ] ]
Teorema:
Si f(x) es continua ==> f(x) es integrable continua Newton-Leibniz.
Demostración:
| S( f(x+h),(x+h) )+(-1)·S( f(x),x ) | = |a|·| f(x+h)·(x+h)+(-1)·f(x)·x | = ...
... |a|·| ( f(x+h)+(-1)·f(x) )·x+f(x+h)·h | [< ...
... |a|·| ( f(x+h)+(-1)·f(x) )·x |+|f(x+h)·h| = |a|·( |x|+|f(x+h)| )·h < s
Teorema:
Si f(x) es monótona ==> f(x) es integrable continua Newton-Leibniz.
Demostración:
| S( f(x+h),(x+h) )+(-1)·S( f(x),x ) | = |a|·| f(x+h)·(x+h)+(-1)·f(x)·x | = ...
... |a|·| ( f(x+h)+(-1)·f(x) )·x+f(x+h)·h| [< |a|·| ( f(x+h)+(-1)·f(x) )·x |+|f(x+h)·h| = ...
... |a|·( |(0+h)·x|+|f(x+h)·h| ) = |a|·( |x|+|f(x+h)| )·h < s
Teorema:
f(x) = x^{n} es integrable continua Newton-Leibniz.
Demostración:
S(x^{n},x) = x^{n+1}
| S( (x+h)^{n},(x+h) )+(-1)·S( x^{n},x ) | = | (x+h)^{n+1}+(-1)·x^{n+1} | = ...
... | P(x^{n+(-k)},h^{k}) |·h < s
Teorema:
f(x) = e^{nx} es integrable continua Newton-Leibniz.
Demostración:
S(e^{nx},x) = e^{nx}·x
| S( e^{n·(x+h)},(x+h) )+(-1)·S( e^{nx},x ) | = | e^{n·(x+h)}·(x+h)+(-1)·e^{nx}·x | = ...
... | e^{nx}·( e^{nh}+(-1) )·x+e^{n·(x+h)}·h | = | e^{nx}·( nh+P( (nh)^{n} ) )·x+e^{n·(x+h)}·h | = ...
... | ne^{nx}( 1+P( (nh)^{n} ) )·x+e^{n·(x+h)} |·h < s
Teorema:
f(x) = ln(x) es integrable continua Newton-Leibniz.
Demostración:
S(ln(x),x) = ln(x)·x
| S( ln(x+h),(x+h) )+(-1)·S( ln(x),x ) | = | ln(x+h)·(x+h)+(-1)·ln(x)·x | = ...
... | ln(1+(h/x))·x+ln(x+h)·h | = | (h/x)·( 1+P( (h/x)^{n} ) )·x+ln(x+h)·h | = ...
... | ( 1+P( (h/x)^{n} ) )+ln(x+h) |·h < s
Teorema:
f(x) = sin(x) es integrable continua Newton-Leibniz.
Demostración:
S(sin(x),x) = sin(x)·x
| S( sin(x+h),(x+h) )+(-1)·S( sin(x),x ) | = | sin(x+h)·(x+h)+(-1)·sin(x)·x | = ...
... | ( sin(x+h)+(-1)·sin(x) )·x+sin(x+h)·h | = ...
... | ( sin(x)·P(h^{n+(-1)})·h+cos(x)·h )·x+sin(x+h)·h | = ...
... | ( sin(x)·P(h^{n+(-1)})+cos(x) )·x+sin(x+h) |·h < s
Economía de objetos de empresa:
Lema: [ de la ventana ]
F(x,y) = 2x+2y+(-h)·( xy+(-1)·ab )
h = ( (a+b)/(ab) )
F(a,b) = 2a+2b
G(x,y) = 2x+2y+(-h)·xy
G(a,b) = h·ab
Disertación:
d_{x}[F(x,y)] = 2+(-h)·y = 0
d_{y}[F(x,y)] = 2+(-h)·x = 0
2x+(-h)·xy = 0x = 0
2y+(-h)·yx = 0y = 0
a+b = h·ab
h = ( (a+b)/(ab) )
Lema: [ de la puerta ]
F(x,y) = x+2y+(-h)·( xy+(-1)·ab )
h = ( ((a/2)+b)/(ab) )
F(a,b) = a+2b
G(x,y) = x+2y+(-h)·xy
G(a,b) = h·ab
Disertación:
d_{x}[F(x,y)] = 1+(-h)·y = 0
d_{y}[F(x,y)] = 2+(-h)·x = 0
x+(-h)·xy = 0x = 0
2y+(-h)·yx = 0y = 0
a+2b = 2h·ab
h = ( ((a/2)+b)/(ab) )
Lema: [ de la caja con tapa ]
F(x,y,z) = 2xy+2yz+2zx+(-h)·( xyz+(-1)·abc )
h = ( ((4/3)·(ab)+(4/3)·(bc)+(4/3)·(ca))/(abc) )
F(a,b,c) = 2ab+2bc+2ca
G(x,y,z) = 2xy+2yz+2zx+(-h)·xyz
G(a,b,c) = (1/2)·h·abc
Disertación:
d_{x}[F(x,y,z)] = 2y+2z+(-h)·yz = 0
d_{y}[F(x,y,z)] = 2x+2z+(-h)·zx = 0
d_{z}[F(x,y,z)] = 2y+2x+(-h)·xy = 0
2xy+2xz+(-h)·xyz = 0x = 0
2yx+2yz+(-h)·xyz = 0y = 0
h = ( ((4/3)·(ab)+(4/3)·(bc)+(4/3)·(ca))/(abc) )
Lema: [ de la caja sin tapa ]
F(x,y,z) = xy+2yz+2zx+(-h)·( xyz+(-1)·abc )
h = ( ((2/3)·(ab)+(4/3)·(bc)+(4/3)·(ca))/(abc) )
F(a,b,c) = ab+2bc+2ca
G(x,y,z) = xy+2yz+2zx+(-h)·xyz
G(a,b,c) = (1/2)·h·abc
Disertación:
d_{x}[F(x,y,z)] = y+2z+(-h)·yz = 0
d_{y}[F(x,y,z)] = x+2z+(-h)·zx = 0
d_{z}[F(x,y,z)] = 2y+2x+(-h)·xy = 0
xy+2xz+(-h)·xyz = 0x = 0
yx+2yz+(-h)·xyz = 0y = 0
h = ( ((2/3)·(ab)+(4/3)·(bc)+(4/3)·(ca))/(abc) )
Lema:
F(x,y) = 2x+2y+(-h)·( xy+(-1)·2! )
F(1,2) = 6
h = (3/2)
Disertación:
Laboratorio de problemas
Lema:
F(x,y,z) = 2xy+2yz+2zx+(-h)·( xyz+(-1)·3! )
F(1,2,3) = 22
h = (4/3)·(11/6) = (22/9)
Disertación:
Laboratorio de problemas.
Lema:
F(x,y) = x+2y+(-h)·( xy+(-1)·2! )
F(2,1) = 4
h = 1
Disertación:
Laboratorio de problemas.
Lema:
F(x,y,z) = xy+2yz+2zx+(-h)·( xyz+(-1)·3! )
F(3,2,1) = 16
h = (2/3)·(16/6) = (16/9)
Disertación:
Laboratorio de problemas.
Teorema:
lim[n = oo][ ( sum[k = 1]-[n][ (1/k) ]/ln(n) ) ] = 1
sum[k = 1]-[oo][ (1/k) ] = ln(2)·oo
Demostración:
lim[n = oo][ ( 1/( n·( ln(n+1)+(-1)·ln(n) )+ln(n+1)+(-1)·ln(n) ) ) ] = ( 1/(1+0) ) = 1
Teorema:
lim[n = oo][ ( sum[k = 1]-[n][ ln(k) ]/( (1/e)·n·ln(n) ) ) ] = 1
sum[k = 1]-[oo][ ln(k) ] = (1/e)·ln(2)·oo^{2} [< (1/2)·oo^{2} = sum[k = 1]-[oo][ k ]
Demostración: [ por destructor en Stolz ]
ln(e) = 1
lim[n = oo][ e·( ln(n+1)/( n·( ln(n+1)+(-1)·ln(n) )+ln(n+1) ) ) ] = e·( ln(oo)/( 1+ln(oo) ) ) = e = ln(e) = 1
Teorema:
ln(2)+(-1)·ln(2) = 0^{2}
Demostración:
ln(oo) < oo
ln(2) < 1
ln(oo)+(-1)·ln(oo) = oo·( ln(2)+(-1)·ln(2) ) = lim[n = oo][ ln(1+(p/n)) ] = 0
Constante de Euler:
lim[n = oo][ ( sum[k = 1]-[n][ (1/k) ] )^{2}+(-1)·( ln(n) )^{2} ] = ln(2)
Teorema infinitorum de Euler:
lim[n = oo][ ( sum[k = 1]-[n][ (1/k) ] )^{2}+(-1)·( n·ln(2+(1/n)) )^{2} ] = ln(2)
Demostración:
( ln(2)·oo )^{2}+(-1)·( ln(2)·oo )^{2} = ln(2)·oo^{2}·( ln(2)+(-1)·ln(2) ) = ln(2)
( ln(2)·oo )^{2}+(-1)·( ln(2)·oo )^{2} = ln(2)·oo·( ln(2)·oo+(-1)·ln(2)·oo ) = ln(2)
( ln(2)·oo )^{2}+(-1)·( ln(2)·oo )^{2} = ln(2)·( ln(2)·oo^{2}+(-1)·ln(2)·oo^{2} ) = ln(2)
Número de Euler inverso:
lim[n = oo][ sum[k = 1]-[n][ ln(k) ]+(-1)·(1/e)·n·ln(n) ] = (1/e)
Teorema infinitorum de Euler-Garriga:
lim[n = oo][ sum[k = 1]-[n][ ln(k) ]+(-1)·(1/e)·n^{2}·ln(2+(1/n)) ] = (1/e)
Demostración:
( (1/e)·ln(2)·oo^{2} )+(-1)·( (1/e)·ln(2)·oo^{2} ) = (1/e)·oo^{2}·( ln(2)+(-1)·ln(2) ) = (1/e)
[En][ ( 1/(n+(-1)) )^{2}·( sum[k = 1]-[n][ ln(k+1) ]+(-1)·n·ln(n+1) ) = 1 ]
Crackeador:
Mov si,cs
Ciclo-de-teclado-positivo
Mov ax,[si]
Xor al,codigo[Interrupción-de-teclado-positiva]
Jz Condicional-de-teclado-positivo
Inc si
Jmp Ciclo-de-teclado-positivo
Condicional-de-teclado-positivo
Ciclo-Jz
Mov ax,[si]
Xor al,codigo[Jz]
Jz Condicional-Jz
Inc si
Jmp Ciclo-Jz
Condicional-Jz
Mov al,codigo [Jmp]
Mov [si],al
Mov di,not(cs)
Ciclo-de-teclado-negativo
Mov dx,[di]
Sys dl,codigo[Interrupción-de-teclado-negativa]
Jf Condicional-de-teclado-negativo
Dec di
Jmp Ciclo-de-teclado-negativo
Condicional-de-teclado-negativo
Ciclo-Jf
Mov dx,[di]
Sys dl,codigo[Jf]
Jf Condicional-Jf
Dec di
Jmp Ciclo-Jf
Condicional-Jf
Mov dl,codigo[Jmp]
Mov [di],dl
Ley:
No puede ser prójimo la demostración al teorema,
por el buey del prójimo,
y no se tiene energía.
Puede ser próximo la demostración al teorema,
por el buey del próximo,
y se tiene energía.
Teorema:
d_{x}[1] = 0
Demostración
0+0 = 0+(-0) = 0^{2}
(1/h)·( (x+h)^{0}+(-1)·x^{0} ) = (1/h)·( x^{0}+0·(h+1+0)+(-1)·x^{0} ) = ...
... (1/h)·( 0h+0^{3} ) = 0·(h/h) = 0
Teorema:
2k·0^{n} = 0^{n+1}
(2k+1)·0^{n} = 0^{n+1}+0^{n} = 0^{n}
Demostración:
0^{n}+0^{n} = 0^{n}+(-0)·0^{n+(-1)} = 0^{n+1}
(2k+2)·0^{n} = 0^{n+1}+( 0^{n}+0^{n} ) = ( 0^{n+1}+0^{n} )+0^{n} = 0^{n}+0^{n} = 0^{n+1}
Teorema:
( (2k)/m )·0^{n} = (1/m)·0^{n+1}
( (2k+1)/m )·0^{n} = (1/m)·0^{n}
Teorema:
lim[n = oo][ ( ( (2k)·n^{p}+a )/( mn^{p+k}+b ) ) ] = (1/m)·0^{k+1}
lim[n = oo][ ( ( (2k+1)·n^{p}+a )/( mn^{p+k}+b ) ) ] = (1/m)·0^{k}
Teorema:
lim[n = oo][ ( ( 13n^{p}+30 )/( 17n^{p+k}+30 ) ) ] = (1/17)·0^{k}
lim[n = oo][ ( ( 11n^{p}+30 )/( 19n^{p+k}+30 ) ) ] = (1/19)·0^{k}
Teorema:
lim[n = oo][ ( ( 8n^{p}+10 )/( 2n^{p+k}+10 ) ) ] = (1/2)·0^{k+1}
lim[n = oo][ ( ( 6n^{p}+10 )/( 4n^{p+k}+10 ) ) ] = (1/4)·0^{k+1}
Demostración:
... lim[n = oo][ ( ( 13n^{p}+30 )/( 17n^{p+k}+30 ) ) ] = ...
... lim[n = oo][ ( n^{p}/n^{p} )·( ( 13n^{p}+30 )/( 17n^{p+k}+30 ) ) ]
... lim[n = oo][ ( ( 13+( 30/n^{p} ) )/( 17n^{k}+( 30/n^{p} ) ) ) ] = ( (13+0)/(17·oo^{k}+0) )...
... (13/17)·(1/oo)^{k} = (13/17)·0^{k} = ( (2·6+1)/17 )·0^{k} = (1/17)·0^{k}
No hay comentarios:
Publicar un comentario