jueves, 25 de marzo de 2021

mecánica industrial imperial

mecánica industrial termodinámica:

T = R·q

q·d_{t}^{(1/m)}[T] = kT^{(1/m)}

T(t) = e^{(k/q)^{m}·t}

q·d_{t}^{(1/m)}[T] = (-1)·kT^{(1/m)}

T(t) = e^{(-1)^{m}·(k/q)^{m}·t}


v = volumen

(v/f)·d_{t}^{(1/m)}[P] = VP^{(1/m)}

P(t) = e^{(f/v)^{m}·V^{m}·t}

(v/f)·d_{t}^{(1/m)}[P] = (-1)·VP^{(1/m)}

P(t) = e^{(-1)^{m}·(f/v)^{m}·V^{m}·t}


p = presión

(p/f)·d_{t}^{(1/m)}[V] = PV^{(1/m)}

V(t) = e^{(f/p)^{m}·P^{m}·t}

(p/f)·d_{t}^{(1/m)}[V] = (-1)·PV^{(1/m)}

V(t) = e^{(-1)^{m}·(f/p)^{m}·P^{m}·t}


mecánica industrial cuántica:

S = superficie


holograma sólido:

m·S·d_{t}^{(1/m)}[f] = h_{e}f^{(1/m)}

f(t) = e^{( h_{e}/(m·S) )^{m}·t}

m·S·d_{t}^{(1/m)}[f] = (-1)·h_{e}f^{(1/m)}

f(t) = e^{(-1)^{m}·( h_{e}/(m·S) )^{m}·t}


holograma fantasmal:

m·S·d_{t}^{(1/m)}[f] = h_{g}f^{(1/m)}

f(t) = e^{( h_{g}/(m·S) )^{m}·t}

m·S·d_{t}^{(1/m)}[f] = (-1)·h_{g}f^{(1/m)}

f(t) = e^{(-1)^{m}·( h_{g}/(m·S) )^{m}·t}

mecánica industrial de circuito eléctrico:

(T/f)·d_{t}^{(1/m)}[I] = qRI^{(1/m)}

I(t) = e^{(f/T)^{m}·(qR)^{m}·t}

(T/f)·d_{t}^{(1/m)}[I] = (-1)·qRI^{(1/m)}

I(t) = e^{(-1)^{m}·(f/T)^{m}·(qR)^{m}·t}

No hay comentarios:

Publicar un comentario