mecánica industrial termodinámica:
T = R·q
q·d_{t}^{(1/m)}[T] = kT^{(1/m)}
T(t) = e^{(k/q)^{m}·t}
q·d_{t}^{(1/m)}[T] = (-1)·kT^{(1/m)}
T(t) = e^{(-1)^{m}·(k/q)^{m}·t}
v = volumen
(v/f)·d_{t}^{(1/m)}[P] = VP^{(1/m)}
P(t) = e^{(f/v)^{m}·V^{m}·t}
(v/f)·d_{t}^{(1/m)}[P] = (-1)·VP^{(1/m)}
P(t) = e^{(-1)^{m}·(f/v)^{m}·V^{m}·t}
p = presión
(p/f)·d_{t}^{(1/m)}[V] = PV^{(1/m)}
V(t) = e^{(f/p)^{m}·P^{m}·t}
(p/f)·d_{t}^{(1/m)}[V] = (-1)·PV^{(1/m)}
V(t) = e^{(-1)^{m}·(f/p)^{m}·P^{m}·t}
mecánica industrial cuántica:
S = superficie
holograma sólido:
m·S·d_{t}^{(1/m)}[f] = h_{e}f^{(1/m)}
f(t) = e^{( h_{e}/(m·S) )^{m}·t}
m·S·d_{t}^{(1/m)}[f] = (-1)·h_{e}f^{(1/m)}
f(t) = e^{(-1)^{m}·( h_{e}/(m·S) )^{m}·t}
holograma fantasmal:
m·S·d_{t}^{(1/m)}[f] = h_{g}f^{(1/m)}
f(t) = e^{( h_{g}/(m·S) )^{m}·t}
m·S·d_{t}^{(1/m)}[f] = (-1)·h_{g}f^{(1/m)}
f(t) = e^{(-1)^{m}·( h_{g}/(m·S) )^{m}·t}
mecánica industrial de circuito eléctrico:
(T/f)·d_{t}^{(1/m)}[I] = qRI^{(1/m)}
I(t) = e^{(f/T)^{m}·(qR)^{m}·t}
(T/f)·d_{t}^{(1/m)}[I] = (-1)·qRI^{(1/m)}
I(t) = e^{(-1)^{m}·(f/T)^{m}·(qR)^{m}·t}
No hay comentarios:
Publicar un comentario