mc = luz sólida o campo de masa.
d_{t}^{(1/m)}[x] = doble punto o perímetro de camino de la luz para ser sólida.
barra laser: ( segmento de dos cruces de laser )
mc·d_{t}^{(1/m)}[x] = qgx^{(1/m)}
x(t) = e^{( ( 1/(mc) )^{m}·(qg)^{m}·t}
mc·d_{t}^{(1/m)}[x] = (-1)·qgx^{(1/m)}
x(t) = e^{(-1)^{m}·( 1/(mc) )^{m}·(qg)^{m}·t}
cuadrado laser: ( superficie cuadrada de un perímetro laser )
mc·d_{t}^{(1/m)}[y] = (1/2)·ay^{(2/m)}
y(t) = ( ( 1/(-1) )·( 1/(mc) )^{m}·(1/2)^{m}·a^{m}·t )^{(-1)}
mc·d_{t}^{(1/m)}[y] = (-1)·(1/2)·ay^{(2/m)}
y(t) = ( (-1)^{m}·( 1/(-1) )·( 1/(mc) )^{m}·(1/2)^{m}·a^{m}·t )^{(-1)}
cubo laser: ( vallado destapado de aristas laser )
mc·d_{t}^{(1/m)}[z] = (4/3)·bz^{(3/m)}
z(t) = ( ( 2/(-1) )·( 1/(mc) )^{m}·(4/3)^{m}·b^{m}·t )^{( (-1)/2 )}
mc·d_{t}^{(1/m)}[z] = (-1)·(4/3)·bz^{(3/m)}
z(t) = ( (-1)^{m}·( 2/(-1) )·( 1/(mc) )^{m}·(4/3)^{m}·b^{m}·t )^{( (-1)/2 )}
No hay comentarios:
Publicar un comentario