lunes, 9 de septiembre de 2024

ecuaciones-de-Maxwell y análisis-funcional-y-teoría-de-cuerdas y medicina y análisis-matemático y economía y mecánica-integral

Principio:

E(x,y,z) = qk·(1/r)^{3}·< x,y,z >

B(d_{t}[x],d_{t}[y],d_{t}[z]) = (-1)·qk·(1/r)^{3}·< d_{t}[x],d_{t}[y],d_{t}[z] >

Principio:

E(yz,zx,xy) = qk·(1/r)^{4}·< yz,zx,xy >

B(d_{t}[yz],d_{t}[zx],d_{t}[xy]) = (-1)·qk·(1/r)^{4}·< d_{t}[yz],d_{t}[zx],d_{t}[xy] >


Ley:

div[ E(x,y,z) ] = 3qk·(1/r)^{3}

div[ int[ B(d_{t}[x],d_{t}[y],d_{t}[z]) ]d[t] ] = (-3)·qk·(1/r)^{3}

Anti-div[ E(yz,zx,xy) ] = 3qk·(1/r)^{4}

Anti-div[ int[ B(d_{t}[yz],d_{t}[zx],d_{t}[xy]) ]d[t] ] = (-3)·qk·(1/r)^{4}


Ley:

div[ E(x,y,z) ] = d_{xyz}[ Anti-potencial[ E(x,y,z) ] ]

Anti-div[ E(yz,zx,xy) ] = d_{xyz}[ potencial[ E(yz,zx,xy) ] ]

Ley:

div[ int[ B(d_{t}[x],d_{t}[y],d_{t}[z]) ]d[t] ] = ...

... d_{xyz}[ Anti-potencial[ int[ B(d_{t}[x],d_{t}[y],d_{t}[z]) ]d[t] ] ]

Anti-div[ int[ B(d_{t}[yz],d_{t}[zx],d_{t}[xy]) ]d[t] ] = ...

... d_{xyz}[ potencial[ int[ B(d_{t}[yz],d_{t}[zx],d_{t}[xy]) ]d[t] ] ]


Ley:

Anti-potencial[ (1/r)·rot[ E(x,y,z) ] ] = ...

... qk·(1/r)^{3}+(1/3)·( 1/(xyz) )·...

... Anti-potencial[ int[ B(d_{t}[x],d_{t}[y],d_{t}[z]) ]d[t] ]

Ley:

Anti-potencial[ (1/r)·rot[ int[ B(d_{t}[x],d_{t}[y],d_{t}[z],d_{t}[q(t)]) ]d[t] ] ] = ...

... d_{t}[q(t)]·k·(1/r)^{3}+(-1)·(1/3)·( 1/(xyz) )·...

... Anti-potencial[ d_{t}[ E(x,y,z,q(t)) ]+B(d_{t}[x],d_{t}[y],d_{t}[z],q(t)) ]


Ley:

rot[ E(x,y,z) ] = qk·(1/r)^{6}·< x,y,z >·< y+(-z),z+(-x),x+(-y) >

rot[ int[ B(d_{t}[x],d_{t}[y],d_{t}[z],d_{t}[q(t)]) ]d[t] ] = ...

... (-1)·q(t) [o(t)o] k·(1/r)^{6}·< x,y,z >·< y+(-z),z+(-x),x+(-y) >


Ley:

Sea Anti-potencial[ J(x,y,z) ] = qk·(1/r)^{3} ==>

J(x,y,z) = (1/r)·rot[ E(x,y,z) ]+...

... (-1)·(1/3)·( ...

... ( 1/(xyz) )·int[ B(d_{t}[x],d_{t}[y],d_{t}[z]) ]d[t]+...

... < (1/yz),(1/zx),(1/xy) >·qk·(1/r)^{3} )

Sea Anti-potencial[ K(x,y,z) ] = d_{t}[q(t)]·k·(1/r)^{3} ==>

K(x,y,z) = (1/r)·rot[ int[ B(d_{t}[x],d_{t}[y],d_{t}[z],d_{t}[q(t)]) ]d[t] ]+...

... (1/3)·( ...

... ( 1/(xyz) )·( d_{t}[ E(x,y,z,q(t)) ]+B(d_{t}[x],d_{t}[y],d_{t}[z],q(t)) )+...

... < (1/yz),(1/zx),(1/xy) >·d_{t}[q(t)]·k·(1/r)^{3} )

Deducción:

Anti-Grad[ Anti-potencial[ F(x,y,z) ] ] = F(x,y,z)

Anti-Grad[ H(x,y,z)·Anti-potencial[ F(x,y,z) ] ] = ...

... H(x,y,z)·F(x,y,z)+Anti-Grad[ H(x,y,z) ]·Anti-potencial[ F(x,y,z) ]


Ley:

Potencial[ (1/r)^{2}·Anti-rot[ E(yz,zx,xy) ] ] = ...

... qk·(1/r)^{4}+(1/3)·( 1/(xyz) )·Potencial[ int[ B(d_{t}[yz],d_{t}[zx],d_{t}[xy]) ]d[t] ]

Ley:

Potencial[ (1/r)^{2}·Anti-rot[ int[ B(d_{t}[yz],d_{t}[zx],d_{t}[xy],d_{t}[q(t)]) ]d[t] ] ] = ...

... d_{t}[q(t)]·k·(1/r)^{4}+(-1)·(1/3)·( 1/(xyz) )·...

... Potencial[ d_{t}[ E(yz,zx,xy,q(t)) ]+B(d_{t}[yz],d_{t}[zx],d_{t}[xy],q(t)) ]


Ley:

Anti-rot[ E(yz,zx,xy) ] = qk·(1/r)^{6}·< yz,zx,xy >·< y+(-z),z+(-x),x+(-y) >

Anti-rot[ int[ B(d_{t}[yz],d_{t}[zx],d_{t}[xy],d_{t}[q(t)]) ]d[t] ] = ...

... (-1)·q(t) [o(t)o] k·(1/r)^{6}·< yz,zx,xy >·< y+(-z),z+(-x),x+(-y) >


Ley:

Sea Potencial[ P(yz,zx,xy) ] = qk·(1/r)^{4} ==>

P(yz,zx,xy) = (1/r)^{2}·Anti-rot[ E(yz,zx,xy) ]+...

... (-1)·(1/3)·( ...

... ( 1/(xyz) )·int[ B(d_{t}[yz],d_{t}[zx],d_{t}[xy]) ]d[t]+...

... (-1)·< (1/x),(1/y),(1/z) >·qk·(1/r)^{4} )

Sea Potencial[ Q(yz,zx,xy) ] = d_{t}[q(t)]·k·(1/r)^{4} ==>

Q(yz,zx,xy) = (1/r)^{2}·Anti-rot[ int[ B(d_{t}[yz],d_{t}[zx],d_{t}[xy],d_{t}[q(t)]) ]d[t] ]+...

... (1/3)·( ...

... ( 1/(xyz) )·( d_{t}[ E(yz,zx,xy,q(t)) ]+B(d_{t}[yz],d_{t}[zx],d_{t}[xy],q(t)) )+...

... (-1)·< (1/x),(1/y),(1/z) >·d_{t}[q(t)]·k·(1/r)^{4} )

Deducción:

Grad[ Potencial[ F(x,y,z) ] ] = F(x,y,z)

Grad[ H(x,y,z)·Potencial[ F(x,y,z) ] ] = ...

... H(x,y,z)·F(x,y,z)+Grad[ H(x,y,z) ]·Potencial[ F(x,y,z) ]


Teorema:

Sea H( y(x) ) = ( d_{x}[y(x)] )^{n+1}+(-1)·(n+1)·d_{x}[y(x)] ==> ...

... Si y(x) = x ==> d_{x}[ H( y(x) ) ] = 0 

Teorema:

Sea H( y(x) ) = ( d_{x}[y(x)] )^{2n+1}+(-1)·( 1/(n+1) )·d_{x}[y(x)] ==> ...

... Si y(x) = (-x) ==> int[ H( y(x) ) ]d[x] = 0


Teorema: [ de determinante de Wronsky ]

Sea H( y(x) ) = det( d_{x}[y(x)]^{n+1},( f(x) )^{n+1} ) ==>

.... Si y(x) = int[ f(x) ]d[x] ==> H( y(x) ) = 0

Teorema: [ de determinante de Wronsky ]

Sea H( y(x) ) = det( d_{x}[y(x)]^{n},( f(x) )^{m} ) ==>

.... Si y(x) = int[ ( f(x) )^{(m/n)} ]d[x] ==> H( y(x) ) = 0


Teorema:

Sea H( y(x) ) = ( x /o(x)o/ d_{x}[y(x)] ) [o(x)o] ( d_{x}[y(x)] )^{n+1}+(-1)·(n+1)·F(x) ==> ...

... Si y(x) = int[ ( f(x) )^{(1/n)} ]d[x] ==> d_{x}[ H( y(x) ) ] = 0

Teorema:

Sea H( y(x) ) = ( x /o(x)o/ d_{x}[y(x)] ) [o(x)o] e^{n·d_{x}[y(x)]}+(-n)·F(x) ==> ...

... Si y(x) = int[ (1/n)·ln( f(x) ) ]d[x] ==> d_{x}[ H( y(x) ) ] = 0


Teorema:

Sea H(x(t),y(t)) = int-int[ (xy)^{n} ]d[x]d[y]+(-1)·f(t) ==> ...

... Si ( ...

... x(t) = ( (n+1)·( f(t) )^{(1/m)} )^{(1/(n+1))} & ...

... y(t) = ( (n+1)·( f(t) )^{1+(-1)·(1/m)} )^{(1/(n+1))} ) ==> H(x(t),y(t)) = 0

Teorema:

Sea H(x(t),y(t)) = int[ x^{n} ]d[x]+int[ y^{n} ]d[y]+(-1)·f(t) ==> ...

... Si ( ...

... x(t) = ( (1/m)·(n+1)·f(t) )^{(1/(n+1)} & ...

... y(t) = ( ( 1+(-1)·(1/m) )·(n+1)·f(t) )^{(1/(n+1))} ) ==> H(x(t),y(t)) = 0


Teorema:

Sea H(x(t),y(t)) = int-int[ e^{nx+ny} ]d[x]d[y]+(-1)·f(t) ==> ...

... Si ( ...

... x(t) = (1/n)·ln( n·( f(t) )^{(1/m)} ) & ...

... y(t) = (1/n)·ln( n·( f(t) )^{1+(-1)·(1/m)} ) ) ==> H(x(t),y(t)) = 0

Teorema:

Sea H(x(t),y(t)) = int[ e^{nx} ]d[x]+int[ e^{ny} ]d[y]+(-1)·f(t) ==> ...

... Si ( ...

... x(t) = (1/n)·ln( (1/m)·n·f(t) ) & ...

... y(t) = (1/n)·ln( ( 1+(-1)·(1/m) )·n·f(t) ) ) ==> H(x(t),y(t)) = 0


Examen de análisis funcional:

Teorema:

Sea H(x(t),y(t)) = int-int[ ( 1/(xy) ) ]d[x]d[y]+(-1)·f(t) ==> ...

... Si ( x(t) = ? & y(t) = ? ) ==> H(x(t),y(t)) = 0

Teorema:

Sea H(x(t),y(t)) = int[ (1/x) ]d[x]+int[ (1/y) ]d[y]+(-1)·f(t) ==> ...

... Si ( x(t) = ? & y(t) = ? ) ==> H(x(t),y(t)) = 0


Recubrimiento de cuerda:

Ley:

Sea H(u(t),v(t)) = int-int[ ku·jv ) ]d[u]d[v]+(-1)·( E(t) )^{2} ==> ...

... Si ( u(t) = ( 2·(1/k)·E(t) )^{(1/2)} & v(t) = ( 2·(1/j)·E(t) )^{(1/2)} ) ==> H(u(t),v(t)) = 0

Ley:

Sea H(u(t),v(t)) = int[ ku ]d[u]+int[ jv ]d[v]+(-2)·E(t) ==> ...

... Si ( u(t) = ( 2·(1/k)·E(t) )^{(1/2)} & v(t) = ( 2·(1/j)·E(t) )^{(1/2)} ) ==> H(u(t),v(t)) = 0


Ley:

Sea H(u(t),v(t)) = int-int[ ke^{iau}·je^{iav} ) ]d[u]d[v]+(-1)·( F(t) )^{2} ==> ...

... Si ( u(t) = ( 1/(ia) )·ln( F(t)·(1/k)·ia ) & v(t) = ( 1/(ia) )·ln( F(t)·(1/j)·ia ) ) ==> H(u(t),v(t)) = 0

Ley:

Sea H(u(t),v(t)) = int[ ke^{iau} ]d[u]+int[ je^{iav} ]d[v]+(-2)·F(t) ==> ...

... Si ( u(t) = ( 1/(ia) )·ln( F(t)·(1/k)·ia ) & v(t) = ( 1/(ia) )·ln( F(t)·(1/j)·ia ) ) ==> H(u(t),v(t)) = 0


Ley:

Sea H(u(t),v(t)) = ...

... int-int[ (1/m)·h^{2}·(1/u)^{3}·(1/M)·h^{2}·(1/v)^{3} ) ]d[u]d[v]+(-1)·( E(t) )^{2} ==> ...

... Si ( u(t) = ih·( 1/(2m·E(t)) )^{(1/2)} & v(t) = ih·( 1/(2M·E(t)) )^{(1/2)} ==> H(u(t),v(t)) = 0

Ley:

Sea H(u(t),v(t)) = ...

... int[ (1/m)·h^{2}·(1/u)^{3} ]d[u]+int[ (1/M)·h^{2}·(1/v)^{3} ]d[v]+(-2)·E(t) ==> ...

... Si ( u(t) = ih·( 1/(2m·E(t)) )^{(1/2)} & v(t) = ih·( 1/(2M·E(t)) )^{(1/2)} ==> H(u(t),v(t)) = 0


Examen de análisis funcional y teoría de cuerdas:

Ley:

Sea H(u(t),v(t)) = int-int[ qge^{iau}·pge^{iav} ) ]d[u]d[v]+(-1)·( E(t) )^{2} ==> ...

... Si ( u(t) = ? & v(t) = ? ==> H(u(t),v(t)) = 0

Ley:

Sea H(u(t),v(t)) = int[ qge^{iau} ]d[u]+int[ pge^{iav} ]d[v]+(-2)·E(t) ==> ...

... Si ( u(t) = ? & v(t) = ? ==> H(u(t),v(t)) = 0

Ley:

Sea H(u(t),v(t)) = int-int[ (1/m)·hbia·e^{iau}·(1/M)·hbia·e^{iav} ) ]d[u]d[v]+(-1)·( E(t) )^{2} ==> ...

... Si ( u(t) = ? & v(t) = ? ==> H(u(t),v(t)) = 0

Ley:

Sea H(u(t),v(t)) = int[ (1/m)·hbia·e^{iau} ]d[u]+int[ (1/M)·hbia·e^{iav} ]d[v]+(-2)·E(t) ==> ...

... Si ( u(t) = ? & v(t) = ? ==> H(u(t),v(t)) = 0


Ley:

Operación Teoróctetxtekiana:

Se emite Luz constructora dentro del cuerpo,

para genes de orden 2 no cancerígenos,

hasta que se va la banda de absorción en la sonda sanguínea.

Genes A-B:

N(CH)CC(CH)N-C(NH)O(NH)C

N(CH)CC(CH)N-CO(NH)OC

Genes S-T:

N(CCg)CC(CCg)N-C(NCg)He(NCg)C

N(CCg)CC(CCg)N-CHe(NH)HeC

Orden de los Genes:

Destructores + Constructores = 4+(-2) = 2

Operación:

1111 [&] 0010 = 0010

1110 [&] 0010 = 0010

Operación Mesorgóctetxtekiana:

Se emite Luz destructora dentro del cuerpo,

para genes de orden 1 cancerígenos,

hasta que se va la banda de absorción en la sonda sanguínea.

Genes A-B:

NNCCNN-CBeOBeC

NNCCNN-COBeOC

Genes S-T:

NNCCNN-CBeHeBeC

NNCCNN-CHeBeHeC

Orden de los Genes:

Destructores + Constructores = 2+(-1) = 1

Operación:

1111 [&] 0001 = 0001

1110 [&] 0001 = 0000

Ley:

Quimioterapia de tumores interiores:

3 Rayos ultra X + 1 Rayo infra X

3 Rayos infra X + 1 Rayo ultra X

Quimioterapia de tumores exteriores:

3 Rayos ultra violetas + 1 Rayo infra rojo

3 Rayos infra rojos + 1 Rayo ultra violeta


Espectro de serie:

Teorema:

Sea [Ak][ |x|^{k} < oo ] ==>

Si H(x) = sum[k = 0]-[oo][ a_{k}·x^{k} ] ==>

lim[n = oo][ ...

... ( < 1,...,x^{n} > )^{(1/2)} ...

... o ...

... ( < a_{0},...(n+1)...,0 >,...(n+1)...,< 0,...(n+1)...,a_{n} > ) ...

... o ...

... ( < 1,...,x^{n} > )^{(1/2)} ] = H(x)

Teorema:

Sea [Ak][ |x|^{k} < oo ] ==>

Si H(x) = sum[k = 0]-[oo][ a_{k}·x^{k} ] ==>

lim[n = oo][ ...

... < 1,...,x^{n} > ...

... o ...

... ( < a_{0},...(n+1)...,0 >,...(n+1)...,< 0,...(n+1)...,a_{2n} > ) ...

... o ...

... < 1,...,x^{n} > ] = (1/2)·( H(x)+H(-x) )


Teorema:

lim[n = oo][ ...

... < 1,...,x^{n} > ...

... o ...

... ( < 1,...(n+1)...,0 >,...(n+1)...,< 0,...(n+1)...,1 > ) ...

... o ...

... < 1,...,x^{n} > ] = (1/2)·( ( 1/(1+x) )+( 1/(1+(-x)) ) )

Teorema:

lim[n = oo][ ...

... < 1,...,x^{n} > ...

... o ...

... ( < x^{p},...(n+1)...,0 >,...(n+1)...,< 0,...(n+1)...,x^{p} > ) ...

... o ...

... < 1,...,x^{n} > ] = (1/2)·x^{p}·( ( 1/(1+x) )+( 1/(1+(-x)) ) )


Teorema:

lim[n = oo][ ...

... < 1,...,x^{n} > ...

... o ...

... ( < 1,...(n+1)...,0 >,...(n+1)...,< 0,...(n+1)...,(1/(2n)!) > ) ...

... o ...

... < 1,...,x^{n} > ] = cosh(x)

Teorema:

lim[n = oo][ ...

... < 1,...,x^{n} > ...

... o ...

... ( < x,...(n+1)...,0 >,...(n+1)...,< 0,...(n+1)...,(1/(2n+1)!)·x > ) ...

... o ...

... < 1,...,x^{n} > ] = sinh(x)


Teorema:

lim[n = oo][ ...

... < x,...,x^{n} > ...

... o ...

... ( < 1,...(n)...,0 >,...(n)...,< 0,...(n)...,(1/(2n+(-2))!) > ) ...

... o ...

... < x,...,x^{n} > ] = x^{2}·cosh(x)

Teorema:

lim[n = oo][ ...

... < x,...,x^{n} > ...

... o ...

... ( < x,...(n)...,0 >,...(n)...,< 0,...(n)...,(1/(2n+(-1))!)·x > ) ...

... o ...

... < x,...,x^{n} > ] = x^{2}·sinh(x)


Teorema:

Sea p >] 1 ==> 

lim[n = oo][ ...

... < 1,...,x^{n} > ...

... o ...

... ( < ( 1/(p+1) ),...(n+1)...,0 >,...(n+1)...,< 0,...(n+1)...,(1/(2n)!)·( 1/((2n)+(p+1)) ) > ) ...

... o ...

... < 1,...,x^{n} > ] = er-cosh[p+1](x)

Teorema:

Sea p >] 1 ==> 

lim[n = oo][ ...

... < 1,...,x^{n} > ...

... o ...

... ( < ( 1/(p+1) )·x,...(n+1)...,0 >,...(n+1)...,< 0,...(n+1)...,(1/(2n+1)!)·( 1/((2n+1)+(p+1)) )·x > ) ...

... o ...

... < 1,...,x^{n} > ] = er-sinh[p+1](x)


Integral de Riemann:

f(x) es integrable Riemann

<==>

[As][ s > 0 ==> [En_{0}][An][ n > n_{0} ==> ...

... | sum[k = 1]-[n][ f( (k/n)·x )·0x ]+(-1)·int[x = 0]-[x][ f(x) ]d[x] | < s ] ]

Teorema:

Si ( f(x) es integrable Riemann & g(x) es integrable Riemann ) ==> f(x)+g(x) es integrable Riemann

Demostración:

Sea s > 0 ==>

Sea s_{1}+s_{2} = s ==>

Se define n_{0} > max{n_{1},n_{2}} ==>

Sea n > n_{0} ==>

| sum[k = 1]-[n][ ( f( (k/n)·x )+g( (k/n)·x ) )·0x ]+(-1)·int[x = 0]-[x][ f(x)+g(x) ]d[x] | < s

Teorema:

Si ( f(x) es integrable Riemann & w€R ) ==> w·f(x) es integrable Riemann

Demostración:

Sea s > 0 ==>

Sea |w|·s_{1} = s ==>

Se define n_{0} > n_{1} ==>

Sea n > n_{0} ==>

| sum[k = 1]-[n][ ( w·f( (k/n)·x ) )·0x ]+(-1)·int[x = 0]-[x][ w·f(x) ]d[x] | < s

Teorema:

Si f(x) es integrable Riemann ==> f(x) es continua

Demostración:

Sea s > 0 ==>

Sea s_{1}+s_{2} = s ==>

Se define n_{0} > max{n_{1},n_{2}} ==>

Sea n > n_{0} ==>

lim[h = 0][ ...

... | sum[k = 1]-[n][ ( f( (k/n)·x+h )+(-1)·f( (k/n)·x ) )·0x ]+(-1)·int[x = x]-[x+h][ f(x) ]d[x] | ] = ...

lim[h = 0][ | sum[k = 1]-[n][ f( (k/n)·x+h )·0x ]+(-1)·int[x = 0]-[x+h][ f(x) ]d[x] |+ ... 

... | sum[k = 1]-[n][ f( (k/n)·x )·0x ]+(-1)·int[x = 0]-[x][ f(x) ]d[x] | ] < s



Espectro integral:

Teorema:

Si F(x) = int[x = 0]-[x][ f(x) ]d[x] ==>

lim[n = oo][ ...

... ( < 0x,...,0x > )^{(1/2)} ...

... o ...

... ( < f((1/n)·x),...(n)...,0 >,...(n)...,< 0,...(n)...,f((n/n)·x) > ) ...

... o ...

... ( < 0x,...,0x > )^{(1/2)} ] = F(x)


Teorema:

lim[n = oo][ ...

... ( < 0x,...,0x > )^{(1/2)} ...

... o ...

... ( < 1,...(n)...,0 >,...(n)...,< 0,...(n)...,1 > ) ...

... o ...

... ( < 0x,...,0x > )^{(1/2)} ] = x

Teorema:

Sea p >] 0 ==>

lim[n = oo][ ...

... ( < 0x,...,0x > )^{(1/2)} ...

... o ...

... ( < ( (1/n)·x )^{p},...(n)...,0 >,...(n)...,< 0,...(n)...,( (n/n)·x )^{p} > ) ...

... o ...

... ( < 0x,...,0x > )^{(1/2)} ] = ( 1/(p+1) )·x^{p+1}

Anexo: [ de Stolz ]

oo^{p+1}+(p+1)·oo^{p}+...+1 = oo^{p+1}


Teorema:

lim[n = oo][ ...

... ( < 0x,...,0x > )^{(1/2)} ...

... o ...

... ( < e^{(1/n)·x},...(n)...,0 >,...(n)...,< 0,...(n)...,e^{(n/n)·x} > ) ...

... o ...

... ( < 0x,...,0x > )^{(1/2)} ] = e^{x}+(-1)

Teorema:

lim[n = oo][ ...

... ( < 0x,...,0x > )^{(1/2)} ...

... o ...

... ( < p^{(1/n)·x},...(n)...,0 >,...(n)...,< 0,...(n)...,p^{(n/n)·x} > ) ...

... o ...

... ( < 0x,...,0x > )^{(1/2)} ] = ( 1/ln(p) )·( p^{x}+(-1) )


Examen de análisis matemático:

Encontrad el espectro integral de la función F(x) = mx^{2}


Universidad de Stroniken:

Curso 1:

Cálculo diferencial:

en Derivadas parciales.

Algebra lineal I:

en vectores y polinomios.

Curso 2:

Cálculo integral:

en Producto integral.

Álgebra lineal II:

en matrices.

Curso 3:

Análisis complejo:

en Integrales circulares.

Ecuaciones diferenciales:

en Anti-Funciones.

Curso 4:

- No cursado en economía. -

Análisis funcional:

en Integrales múltiples.

Geometría diferencial:

en Formas fundamentales.


Título de Matemáticas:

Curso 5:

Análisis matemático I:

en sucesiones y desigualdades.

Teoría de conjuntos.

Curso 6:

Análisis matemático II:

en series y series trigonométricas.

Topología-y-Medida.

Curso 7:

Análisis matemático III:

en espectro y continuidad.

Álgebra:

en ecuaciones algebraicas.

Curso 8:

Análisis matemático IV:

en sucesiones de funciones.

Teoría de números.


Título de Física-y-Psíquica:

Curso 5:

Mecánica estadística.

Psico-neurología y Circuitos eléctricos.

Curso 6:

Ecuaciones de Maxwell.

Termodinámica.

Curso 7:

Mecánica cuántica.

Relatividad.

Curso 8:

Mecanismo de Gauge.

Teoría de Cuerdas.


Título de Economía:

Curso 5:

Socios y Inversiones.

Automatismos y Tarifas variables.

Curso 6:

Bolsas y Patrimonio.

Créditos y Intereses.

Curso 7:

Impuestos generados


Cardenal de la ciencia:

Matemático.

Arco-obispo de la ciencia:

Físico.

Obispo de la ciencia:

Economista.


Lema:

Socialismo:

lim[r = 0][ int[z = re^{ix}+1][ f(z)/(z+(-1)) ]·d_{x}[z]·d[x] ] = 2pi·i·f(1) = 2

f(a) = a·( 1/(pi·i) )

Social-Democracia:

lim[r = 0][ int[z = re^{ix}+1][ f(z)/((z+(-1))·(z+1)) ]·d_{x}[z]·d[x] ] = pi·i·f(1) = 1

f(a) = a·( 1/(pi·i) )

Lema:

Socialismo:

lim[r = 0][ int[z = re^{ix}+(-1)][ f(z)/(z+1) ]·d_{x}[z]·d[x] ] = 2pi·i·f(-1) = 2

f(a) = (-a)·( 1/(pi·i) )

Social-Democracia:

lim[r = 0][ int[z = re^{ix}+(-1)][ f(z)/((z+3)·(z+1)) ]·d_{x}[z]·d[x] ] = pi·i·f(-1) = 1

f(a) = (-a)·( 1/(pi·i) )

Lema:

Socialismo:

lim[r = 0][ ...

... int[z = ( re^{ix}+1 )^{(1/2)}][ f(z^{2})·( (z^{2}+1)/(z^{2}+(-1)) ) ]·d_{x}[z]·d[x] ] = 2pi·i·f(1) = 2

f(a) = a·(1/pi·i)

Social-Democracia:

lim[r = 0][ int[z = ( re^{ix}+1 )^{(1/2)}][ f(z^{2})/(z^{2}+(-1)) ]·d_{x}[z]·d[x] ] = pi·i·f(1) = 1

f(a) = a·(1/pi·i)

Lema:

Socialismo:

lim[r = 0][ ...

... int[z = ( re^{ix}+(-1) )^{(1/2)}][ f(z^{2})·( (z^{2}+3)/(z^{2}+1) ) ]·d_{x}[z]·d[x] ] = 2pi·f(-1) = 2

f(a) = (-a)·(1/pi)

Social-Democracia:

lim[r = 0][ int[z = ( re^{ix}+(-1) )^{(1/2)}][ f(z^{2})/(z^{2}+1) ]·d_{x}[z]·d[x] ] = pi·f(-1) = 1

f(a) = (-a)·(1/pi)


Ley:

int[ax = 0]-[1][ d_{t}[y(t,ax)] ]d[ax]+u·w(ut)·y(t,1) = (1/m)·p(t)

y(t,ax) = (1/a)·Anti-[ ( s /o(s)o/ int[ d_{ax}[ ( (-1)·w(ut)·s+(1/m)·p(t)·(a/u) )·(ax)^{2} ] ]d[s] ) ]-(ut)

Ley:

int[ax = 0]-[1][ d_{t}[y(t,ax)]^{2} ]d[ax]+u^{2}·w(ut)·( y(t,1) )^{2} = (2/m)·E(t)

y(t,ax) = (1/a)·...

...Anti-[ ( ...

... s /o(s)o/ int[ d_{ax}[ ( (-1)·w(ut)·s^{2}+(2/m)·E(t)·(a/u)^{2} )·(ax)^{2} ] ]d[s] ...

... )^{[o(s)o] (1/2)} ]-(ut)

Ley:

int[ax = 0]-[1][ d_{t}[y(t,ax)]^{2n} ]d[ax]+u^{2n}·w(ut)·( y(t,1) )^{2n} = ( (2/m)·E(t) )^{n}

y(t,ax) = (1/a)·...

...Anti-[ ( ...

... s /o(s)o/ int[ d_{ax}[ ( (-1)·w(ut)·s^{2n}+( (2/m)·E(t) )^{n}·(a/u)^{2n} )·(ax)^{2} ] ]d[s] ...

... )^{[o(s)o] (1/(2n))} ]-(ut)


Examen de mecánica integral:

Ley:

int[ax = 0]-[1][ d_{t}[y(t,ax)]^{3} ]d[ax]+u^{3}·w(ut)·( y(t,1) )^{3} = (4/m)·c·E(t)

y(t,ax) = ?

Ley:

int[ax = 0]-[1][ d_{t}[y(t,ax)]^{2} ]d[ax]+u^{2}·w(ut)·( y(t,1) )^{2} = (2/m)·c·p(t)

y(t,ax) = ?

Ley:

int[ax = 0]-[1][ d_{t}[y(t,ax)]^{2n} ]d[ax]+u^{2n}·w(ut)·( y(t,1) )^{2n} = ( (2/m)·c·p(t) )^{n}

y(t,ax) = ?


Ley:

int[ax = 0]-[1][ (m/k)·d_{t}[y(t,ax)] ]d[ax]+(1/u)·w(ut)·y(t,1) = r^{2}·(1/c)

y(t,ax) = (1/a)·...

... Anti-[ ( s /o(s)o/ int[ d_{ax}[ ( (-1)·w(ut)·s+r^{2}·(1/c)·au )·(ax)^{2} ] ]d[s] ) ]-((k/m)·(1/u)·t)

Ley:

int[ax = 0]-[1][ (m/b)·d_{t}[y(t,ax)] ]d[ax]+w(ut)·y(t,1) = ct

y(t,ax) = ?

No hay comentarios:

Publicar un comentario