Principio:
E(x,y,z) = qk·(1/r)^{3}·< x,y,z >
B(d_{t}[x],d_{t}[y],d_{t}[z]) = (-1)·qk·(1/r)^{3}·< d_{t}[x],d_{t}[y],d_{t}[z] >
Principio:
E(yz,zx,xy) = qk·(1/r)^{4}·< yz,zx,xy >
B(d_{t}[yz],d_{t}[zx],d_{t}[xy]) = (-1)·qk·(1/r)^{4}·< d_{t}[yz],d_{t}[zx],d_{t}[xy] >
Ley:
div[ E(x,y,z) ] = 3qk·(1/r)^{3}
div[ int[ B(d_{t}[x],d_{t}[y],d_{t}[z]) ]d[t] ] = (-3)·qk·(1/r)^{3}
Anti-div[ E(yz,zx,xy) ] = 3qk·(1/r)^{4}
Ley:
div[ E(x,y,z) ] = d_{xyz}[ Anti-potencial[ E(x,y,z) ] ]
Anti-div[ E(yz,zx,xy) ] = d_{xyz}[ potencial[ E(yz,zx,xy) ] ]
Ley:
div[ int[ B(d_{t}[x],d_{t}[y],d_{t}[z]) ]d[t] ] = ...
... d_{xyz}[ Anti-potencial[ int[ B(d_{t}[x],d_{t}[y],d_{t}[z]) ]d[t] ] ]
Anti-div[ int[ B(d_{t}[yz],d_{t}[zx],d_{t}[xy]) ]d[t] ] = ...
... d_{xyz}[ potencial[ int[ B(d_{t}[yz],d_{t}[zx],d_{t}[xy]) ]d[t] ] ]
Ley:
Anti-potencial[ (1/r)·rot[ E(x,y,z) ] ] = ...
... qk·(1/r)^{3}+(1/3)·( 1/(xyz) )·...
... Anti-potencial[ int[ B(d_{t}[x],d_{t}[y],d_{t}[z]) ]d[t] ]
Ley:
Anti-potencial[ (1/r)·rot[ int[ B(d_{t}[x],d_{t}[y],d_{t}[z],d_{t}[q(t)]) ]d[t] ] ] = ...
... d_{t}[q(t)]·k·(1/r)^{3}+(-1)·(1/3)·( 1/(xyz) )·...
... Anti-potencial[ d_{t}[ E(x,y,z,q(t)) ]+B(d_{t}[x],d_{t}[y],d_{t}[z],q(t)) ]
Ley:
rot[ E(x,y,z) ] = qk·(1/r)^{6}·< x,y,z >·< y+(-z),z+(-x),x+(-y) >
rot[ int[ B(d_{t}[x],d_{t}[y],d_{t}[z],d_{t}[q(t)]) ]d[t] ] = ...
... (-1)·q(t) [o(t)o] k·(1/r)^{6}·< x,y,z >·< y+(-z),z+(-x),x+(-y) >
Ley:
Sea Anti-potencial[ J(x,y,z) ] = qk·(1/r)^{3} ==>
J(x,y,z) = (1/r)·rot[ E(x,y,z) ]+...
... (-1)·(1/3)·( ...
... ( 1/(xyz) )·int[ B(d_{t}[x],d_{t}[y],d_{t}[z]) ]d[t]+...
... < (1/yz),(1/zx),(1/xy) >·qk·(1/r)^{3} )
Sea Anti-potencial[ K(x,y,z) ] = d_{t}[q(t)]·k·(1/r)^{3} ==>
K(x,y,z) = (1/r)·rot[ int[ B(d_{t}[x],d_{t}[y],d_{t}[z],d_{t}[q(t)]) ]d[t] ]+...
... (1/3)·( ...
... ( 1/(xyz) )·( d_{t}[ E(x,y,z,q(t)) ]+B(d_{t}[x],d_{t}[y],d_{t}[z],q(t)) )+...
... < (1/yz),(1/zx),(1/xy) >·d_{t}[q(t)]·k·(1/r)^{3} )
Deducción:
Anti-Grad[ Anti-potencial[ F(x,y,z) ] ] = F(x,y,z)
Anti-Grad[ H(x,y,z)·Anti-potencial[ F(x,y,z) ] ] = ...
... H(x,y,z)·F(x,y,z)+Anti-Grad[ H(x,y,z) ]·Anti-potencial[ F(x,y,z) ]
Ley:
Potencial[ (1/r)^{2}·Anti-rot[ E(yz,zx,xy) ] ] = ...
... qk·(1/r)^{4}+(1/3)·( 1/(xyz) )·Potencial[ int[ B(d_{t}[yz],d_{t}[zx],d_{t}[xy]) ]d[t] ]
Ley:
Potencial[ (1/r)^{2}·Anti-rot[ int[ B(d_{t}[yz],d_{t}[zx],d_{t}[xy],d_{t}[q(t)]) ]d[t] ] ] = ...
... d_{t}[q(t)]·k·(1/r)^{4}+(-1)·(1/3)·( 1/(xyz) )·...
... Potencial[ d_{t}[ E(yz,zx,xy,q(t)) ]+B(d_{t}[yz],d_{t}[zx],d_{t}[xy],q(t)) ]
Ley:
Anti-rot[ E(yz,zx,xy) ] = qk·(1/r)^{6}·< yz,zx,xy >·< y+(-z),z+(-x),x+(-y) >
Anti-rot[ int[ B(d_{t}[yz],d_{t}[zx],d_{t}[xy],d_{t}[q(t)]) ]d[t] ] = ...
... (-1)·q(t) [o(t)o] k·(1/r)^{6}·< yz,zx,xy >·< y+(-z),z+(-x),x+(-y) >
Ley:
Sea Potencial[ P(yz,zx,xy) ] = qk·(1/r)^{4} ==>
P(yz,zx,xy) = (1/r)^{2}·Anti-rot[ E(yz,zx,xy) ]+...
... (-1)·(1/3)·( ...
... ( 1/(xyz) )·int[ B(d_{t}[yz],d_{t}[zx],d_{t}[xy]) ]d[t]+...
... (-1)·< (1/x),(1/y),(1/z) >·qk·(1/r)^{4} )
Sea Potencial[ Q(yz,zx,xy) ] = d_{t}[q(t)]·k·(1/r)^{4} ==>
Q(yz,zx,xy) = (1/r)^{2}·Anti-rot[ int[ B(d_{t}[yz],d_{t}[zx],d_{t}[xy],d_{t}[q(t)]) ]d[t] ]+...
... (1/3)·( ...
... ( 1/(xyz) )·( d_{t}[ E(yz,zx,xy,q(t)) ]+B(d_{t}[yz],d_{t}[zx],d_{t}[xy],q(t)) )+...
... (-1)·< (1/x),(1/y),(1/z) >·d_{t}[q(t)]·k·(1/r)^{4} )
Deducción:
Grad[ Potencial[ F(x,y,z) ] ] = F(x,y,z)
Grad[ H(x,y,z)·Potencial[ F(x,y,z) ] ] = ...
... H(x,y,z)·F(x,y,z)+Grad[ H(x,y,z) ]·Potencial[ F(x,y,z) ]
Teorema:
Sea H( y(x) ) = ( d_{x}[y(x)] )^{n+1}+(-1)·(n+1)·d_{x}[y(x)] ==> ...
... Si y(x) = x ==> d_{x}[ H( y(x) ) ] = 0
Teorema:
Sea H( y(x) ) = ( d_{x}[y(x)] )^{2n+1}+(-1)·( 1/(n+1) )·d_{x}[y(x)] ==> ...
... Si y(x) = (-x) ==> int[ H( y(x) ) ]d[x] = 0
Teorema: [ de determinante de Wronsky ]
Sea H( y(x) ) = det( d_{x}[y(x)]^{n+1},( f(x) )^{n+1} ) ==>
.... Si y(x) = int[ f(x) ]d[x] ==> H( y(x) ) = 0
Teorema: [ de determinante de Wronsky ]
Sea H( y(x) ) = det( d_{x}[y(x)]^{n},( f(x) )^{m} ) ==>
.... Si y(x) = int[ ( f(x) )^{(m/n)} ]d[x] ==> H( y(x) ) = 0
Teorema:
Sea H( y(x) ) = ( x /o(x)o/ d_{x}[y(x)] ) [o(x)o] ( d_{x}[y(x)] )^{n+1}+(-1)·(n+1)·F(x) ==> ...
... Si y(x) = int[ ( f(x) )^{(1/n)} ]d[x] ==> d_{x}[ H( y(x) ) ] = 0
Teorema:
Sea H( y(x) ) = ( x /o(x)o/ d_{x}[y(x)] ) [o(x)o] e^{n·d_{x}[y(x)]}+(-n)·F(x) ==> ...
... Si y(x) = int[ (1/n)·ln( f(x) ) ]d[x] ==> d_{x}[ H( y(x) ) ] = 0
Teorema:
Sea H(x(t),y(t)) = int-int[ (xy)^{n} ]d[x]d[y]+(-1)·f(t) ==> ...
... Si ( ...
... x(t) = ( (n+1)·( f(t) )^{(1/m)} )^{(1/(n+1))} & ...
... y(t) = ( (n+1)·( f(t) )^{1+(-1)·(1/m)} )^{(1/(n+1))} ) ==> H(x(t),y(t)) = 0
Teorema:
Sea H(x(t),y(t)) = int[ x^{n} ]d[x]+int[ y^{n} ]d[y]+(-1)·f(t) ==> ...
... Si ( ...
... x(t) = ( (1/m)·(n+1)·f(t) )^{(1/(n+1)} & ...
... y(t) = ( ( 1+(-1)·(1/m) )·(n+1)·f(t) )^{(1/(n+1))} ) ==> H(x(t),y(t)) = 0
Teorema:
Sea H(x(t),y(t)) = int-int[ e^{nx+ny} ]d[x]d[y]+(-1)·f(t) ==> ...
... Si ( ...
... x(t) = (1/n)·ln( n·( f(t) )^{(1/m)} ) & ...
... y(t) = (1/n)·ln( n·( f(t) )^{1+(-1)·(1/m)} ) ) ==> H(x(t),y(t)) = 0
Teorema:
Sea H(x(t),y(t)) = int[ e^{nx} ]d[x]+int[ e^{ny} ]d[y]+(-1)·f(t) ==> ...
... Si ( ...
... x(t) = (1/n)·ln( (1/m)·n·f(t) ) & ...
... y(t) = (1/n)·ln( ( 1+(-1)·(1/m) )·n·f(t) ) ) ==> H(x(t),y(t)) = 0
Examen de análisis funcional:
Teorema:
Sea H(x(t),y(t)) = int-int[ ( 1/(xy) ) ]d[x]d[y]+(-1)·f(t) ==> ...
... Si ( x(t) = ? & y(t) = ? ) ==> H(x(t),y(t)) = 0
Teorema:
Sea H(x(t),y(t)) = int[ (1/x) ]d[x]+int[ (1/y) ]d[y]+(-1)·f(t) ==> ...
... Si ( x(t) = ? & y(t) = ? ) ==> H(x(t),y(t)) = 0
Recubrimiento de cuerda:
Ley:
Sea H(u(t),v(t)) = int-int[ ku·jv ) ]d[u]d[v]+(-1)·( E(t) )^{2} ==> ...
... Si ( u(t) = ( 2·(1/k)·E(t) )^{(1/2)} & v(t) = ( 2·(1/j)·E(t) )^{(1/2)} ) ==> H(u(t),v(t)) = 0
Ley:
Sea H(u(t),v(t)) = int[ ku ]d[u]+int[ jv ]d[v]+(-2)·E(t) ==> ...
... Si ( u(t) = ( 2·(1/k)·E(t) )^{(1/2)} & v(t) = ( 2·(1/j)·E(t) )^{(1/2)} ) ==> H(u(t),v(t)) = 0
Ley:
Sea H(u(t),v(t)) = int-int[ ke^{iau}·je^{iav} ) ]d[u]d[v]+(-1)·( F(t) )^{2} ==> ...
... Si ( u(t) = ( 1/(ia) )·ln( F(t)·(1/k)·ia ) & v(t) = ( 1/(ia) )·ln( F(t)·(1/j)·ia ) ) ==> H(u(t),v(t)) = 0
Ley:
Sea H(u(t),v(t)) = int[ ke^{iau} ]d[u]+int[ je^{iav} ]d[v]+(-2)·F(t) ==> ...
... Si ( u(t) = ( 1/(ia) )·ln( F(t)·(1/k)·ia ) & v(t) = ( 1/(ia) )·ln( F(t)·(1/j)·ia ) ) ==> H(u(t),v(t)) = 0
Ley:
Sea H(u(t),v(t)) = ...
... int-int[ (1/m)·h^{2}·(1/u)^{3}·(1/M)·h^{2}·(1/v)^{3} ) ]d[u]d[v]+(-1)·( E(t) )^{2} ==> ...
... Si ( u(t) = ih·( 1/(2m·E(t)) )^{(1/2)} & v(t) = ih·( 1/(2M·E(t)) )^{(1/2)} ==> H(u(t),v(t)) = 0
Ley:
Sea H(u(t),v(t)) = ...
... int[ (1/m)·h^{2}·(1/u)^{3} ]d[u]+int[ (1/M)·h^{2}·(1/v)^{3} ]d[v]+(-2)·E(t) ==> ...
... Si ( u(t) = ih·( 1/(2m·E(t)) )^{(1/2)} & v(t) = ih·( 1/(2M·E(t)) )^{(1/2)} ==> H(u(t),v(t)) = 0
Examen de análisis funcional y teoría de cuerdas:
Ley:
Sea H(u(t),v(t)) = int-int[ qge^{iau}·pge^{iav} ) ]d[u]d[v]+(-1)·( E(t) )^{2} ==> ...
... Si ( u(t) = ? & v(t) = ? ==> H(u(t),v(t)) = 0
Ley:
Sea H(u(t),v(t)) = int[ qge^{iau} ]d[u]+int[ pge^{iav} ]d[v]+(-2)·E(t) ==> ...
... Si ( u(t) = ? & v(t) = ? ==> H(u(t),v(t)) = 0
Ley:
Sea H(u(t),v(t)) = int-int[ (1/m)·hbia·e^{iau}·(1/M)·hbia·e^{iav} ) ]d[u]d[v]+(-1)·( E(t) )^{2} ==> ...
... Si ( u(t) = ? & v(t) = ? ==> H(u(t),v(t)) = 0
Ley:
Sea H(u(t),v(t)) = int[ (1/m)·hbia·e^{iau} ]d[u]+int[ (1/M)·hbia·e^{iav} ]d[v]+(-2)·E(t) ==> ...
... Si ( u(t) = ? & v(t) = ? ==> H(u(t),v(t)) = 0
Ley:
Operación Teoróctetxtekiana:
Se emite Luz constructora dentro del cuerpo,
para genes de orden 2 no cancerígenos,
hasta que se va la banda de absorción en la sonda sanguínea.
Genes A-B:
N(CH)CC(CH)N-C(NH)O(NH)C
N(CH)CC(CH)N-CO(NH)OC
Genes S-T:
N(CCg)CC(CCg)N-C(NCg)He(NCg)C
N(CCg)CC(CCg)N-CHe(NH)HeC
Orden de los Genes:
Destructores + Constructores = 4+(-2) = 2
Operación:
1111 [&] 0010 = 0010
1110 [&] 0010 = 0010
Operación Mesorgóctetxtekiana:
Se emite Luz destructora dentro del cuerpo,
para genes de orden 1 cancerígenos,
hasta que se va la banda de absorción en la sonda sanguínea.
Genes A-B:
NNCCNN-CBeOBeC
NNCCNN-COBeOC
Genes S-T:
NNCCNN-CBeHeBeC
NNCCNN-CHeBeHeC
Orden de los Genes:
Destructores + Constructores = 2+(-1) = 1
Operación:
1111 [&] 0001 = 0001
1110 [&] 0001 = 0000
Ley:
Quimioterapia de tumores interiores:
3 Rayos ultra X + 1 Rayo infra X
3 Rayos infra X + 1 Rayo ultra X
Quimioterapia de tumores exteriores:
3 Rayos ultra violetas + 1 Rayo infra rojo
3 Rayos infra rojos + 1 Rayo ultra violeta
Espectro de serie:
Teorema:
Sea [Ak][ |x|^{k} < oo ] ==>
Si H(x) = sum[k = 0]-[oo][ a_{k}·x^{k} ] ==>
lim[n = oo][ ...
... ( < 1,...,x^{n} > )^{(1/2)} ...
... o ...
... ( < a_{0},...(n+1)...,0 >,...(n+1)...,< 0,...(n+1)...,a_{n} > ) ...
... o ...
... ( < 1,...,x^{n} > )^{(1/2)} ] = H(x)
Teorema:
Sea [Ak][ |x|^{k} < oo ] ==>
Si H(x) = sum[k = 0]-[oo][ a_{k}·x^{k} ] ==>
lim[n = oo][ ...
... < 1,...,x^{n} > ...
... o ...
... ( < a_{0},...(n+1)...,0 >,...(n+1)...,< 0,...(n+1)...,a_{2n} > ) ...
... o ...
... < 1,...,x^{n} > ] = (1/2)·( H(x)+H(-x) )
Teorema:
lim[n = oo][ ...
... < 1,...,x^{n} > ...
... o ...
... ( < 1,...(n+1)...,0 >,...(n+1)...,< 0,...(n+1)...,1 > ) ...
... o ...
... < 1,...,x^{n} > ] = (1/2)·( ( 1/(1+x) )+( 1/(1+(-x)) ) )
Teorema:
lim[n = oo][ ...
... < 1,...,x^{n} > ...
... o ...
... ( < x^{p},...(n+1)...,0 >,...(n+1)...,< 0,...(n+1)...,x^{p} > ) ...
... o ...
... < 1,...,x^{n} > ] = (1/2)·x^{p}·( ( 1/(1+x) )+( 1/(1+(-x)) ) )
Teorema:
lim[n = oo][ ...
... < 1,...,x^{n} > ...
... o ...
... ( < 1,...(n+1)...,0 >,...(n+1)...,< 0,...(n+1)...,(1/(2n)!) > ) ...
... o ...
... < 1,...,x^{n} > ] = cosh(x)
Teorema:
lim[n = oo][ ...
... < 1,...,x^{n} > ...
... o ...
... ( < x,...(n+1)...,0 >,...(n+1)...,< 0,...(n+1)...,(1/(2n+1)!)·x > ) ...
... o ...
... < 1,...,x^{n} > ] = sinh(x)
Teorema:
lim[n = oo][ ...
... < x,...,x^{n} > ...
... o ...
... ( < 1,...(n)...,0 >,...(n)...,< 0,...(n)...,(1/(2n+(-2))!) > ) ...
... o ...
... < x,...,x^{n} > ] = x^{2}·cosh(x)
Teorema:
lim[n = oo][ ...
... < x,...,x^{n} > ...
... o ...
... ( < x,...(n)...,0 >,...(n)...,< 0,...(n)...,(1/(2n+(-1))!)·x > ) ...
... o ...
... < x,...,x^{n} > ] = x^{2}·sinh(x)
Teorema:
Sea p >] 1 ==>
lim[n = oo][ ...
... < 1,...,x^{n} > ...
... o ...
... ( < ( 1/(p+1) ),...(n+1)...,0 >,...(n+1)...,< 0,...(n+1)...,(1/(2n)!)·( 1/((2n)+(p+1)) ) > ) ...
... o ...
... < 1,...,x^{n} > ] = er-cosh[p+1](x)
Teorema:
Sea p >] 1 ==>
lim[n = oo][ ...
... < 1,...,x^{n} > ...
... o ...
... ( < ( 1/(p+1) )·x,...(n+1)...,0 >,...(n+1)...,< 0,...(n+1)...,(1/(2n+1)!)·( 1/((2n+1)+(p+1)) )·x > ) ...
... o ...
... < 1,...,x^{n} > ] = er-sinh[p+1](x)
Integral de Riemann:
f(x) es integrable Riemann
<==>
[As][ s > 0 ==> [En_{0}][An][ n > n_{0} ==> ...
... | sum[k = 1]-[n][ f( (k/n)·x )·0x ]+(-1)·int[x = 0]-[x][ f(x) ]d[x] | < s ] ]
Teorema:
Si ( f(x) es integrable Riemann & g(x) es integrable Riemann ) ==> f(x)+g(x) es integrable Riemann
Demostración:
Sea s > 0 ==>
Sea s_{1}+s_{2} = s ==>
Se define n_{0} > max{n_{1},n_{2}} ==>
Sea n > n_{0} ==>
| sum[k = 1]-[n][ ( f( (k/n)·x )+g( (k/n)·x ) )·0x ]+(-1)·int[x = 0]-[x][ f(x)+g(x) ]d[x] | < s
Teorema:
Si ( f(x) es integrable Riemann & w€R ) ==> w·f(x) es integrable Riemann
Demostración:
Sea s > 0 ==>
Sea |w|·s_{1} = s ==>
Se define n_{0} > n_{1} ==>
Sea n > n_{0} ==>
| sum[k = 1]-[n][ ( w·f( (k/n)·x ) )·0x ]+(-1)·int[x = 0]-[x][ w·f(x) ]d[x] | < s
Teorema:
Si f(x) es integrable Riemann ==> f(x) es continua
Demostración:
Sea s > 0 ==>
Sea s_{1}+s_{2} = s ==>
Se define n_{0} > max{n_{1},n_{2}} ==>
Sea n > n_{0} ==>
Espectro integral:
Teorema:
Si F(x) = int[x = 0]-[x][ f(x) ]d[x] ==>
lim[n = oo][ ...
... ( < 0x,...,0x > )^{(1/2)} ...
... o ...
... ( < f((1/n)·x),...(n)...,0 >,...(n)...,< 0,...(n)...,f((n/n)·x) > ) ...
... o ...
... ( < 0x,...,0x > )^{(1/2)} ] = F(x)
Teorema:
lim[n = oo][ ...
... ( < 0x,...,0x > )^{(1/2)} ...
... o ...
... ( < 1,...(n)...,0 >,...(n)...,< 0,...(n)...,1 > ) ...
... o ...
... ( < 0x,...,0x > )^{(1/2)} ] = x
Teorema:
Sea p >] 0 ==>
lim[n = oo][ ...
... ( < 0x,...,0x > )^{(1/2)} ...
... o ...
... ( < ( (1/n)·x )^{p},...(n)...,0 >,...(n)...,< 0,...(n)...,( (n/n)·x )^{p} > ) ...
... o ...
... ( < 0x,...,0x > )^{(1/2)} ] = ( 1/(p+1) )·x^{p+1}
Anexo: [ de Stolz ]
oo^{p+1}+(p+1)·oo^{p}+...+1 = oo^{p+1}
Teorema:
lim[n = oo][ ...
... ( < 0x,...,0x > )^{(1/2)} ...
... o ...
... ( < e^{(1/n)·x},...(n)...,0 >,...(n)...,< 0,...(n)...,e^{(n/n)·x} > ) ...
... o ...
... ( < 0x,...,0x > )^{(1/2)} ] = e^{x}+(-1)
Teorema:
lim[n = oo][ ...
... ( < 0x,...,0x > )^{(1/2)} ...
... o ...
... ( < p^{(1/n)·x},...(n)...,0 >,...(n)...,< 0,...(n)...,p^{(n/n)·x} > ) ...
... o ...
... ( < 0x,...,0x > )^{(1/2)} ] = ( 1/ln(p) )·( p^{x}+(-1) )
Examen de análisis matemático:
Encontrad el espectro integral de la función F(x) = mx^{2}
Universidad de Stroniken:
Curso 1:
Cálculo diferencial:
en Derivadas parciales.
Algebra lineal I:
en vectores y polinomios.
Curso 2:
Cálculo integral:
en Producto integral.
Álgebra lineal II:
en matrices.
Curso 3:
Análisis complejo:
en Integrales circulares.
Ecuaciones diferenciales:
en Anti-Funciones.
Curso 4:
- No cursado en economía. -
Análisis funcional:
en Integrales múltiples.
Geometría diferencial:
en Formas fundamentales.
Título de Matemáticas:
Curso 5:
Análisis matemático I:
en sucesiones y desigualdades.
Teoría de conjuntos.
Curso 6:
Análisis matemático II:
en series y series trigonométricas.
Topología-y-Medida.
Curso 7:
Análisis matemático III:
en espectro y continuidad.
Álgebra:
en ecuaciones algebraicas.
Curso 8:
Análisis matemático IV:
en sucesiones de funciones.
Teoría de números.
Título de Física-y-Psíquica:
Curso 5:
Mecánica estadística.
Psico-neurología y Circuitos eléctricos.
Curso 6:
Ecuaciones de Maxwell.
Termodinámica.
Curso 7:
Mecánica cuántica.
Relatividad.
Curso 8:
Mecanismo de Gauge.
Teoría de Cuerdas.
Título de Economía:
Curso 5:
Socios y Inversiones.
Automatismos y Tarifas variables.
Curso 6:
Bolsas y Patrimonio.
Créditos y Intereses.
Curso 7:
Impuestos generados
Cardenal de la ciencia:
Matemático.
Arco-obispo de la ciencia:
Físico.
Obispo de la ciencia:
Economista.
Lema:
Socialismo:
lim[r = 0][ int[z = re^{ix}+1][ f(z)/(z+(-1)) ]·d_{x}[z]·d[x] ] = 2pi·i·f(1) = 2
f(a) = a·( 1/(pi·i) )
Social-Democracia:
lim[r = 0][ int[z = re^{ix}+1][ f(z)/((z+(-1))·(z+1)) ]·d_{x}[z]·d[x] ] = pi·i·f(1) = 1
f(a) = a·( 1/(pi·i) )
Lema:
Socialismo:
lim[r = 0][ int[z = re^{ix}+(-1)][ f(z)/(z+1) ]·d_{x}[z]·d[x] ] = 2pi·i·f(-1) = 2
f(a) = (-a)·( 1/(pi·i) )
Social-Democracia:
lim[r = 0][ int[z = re^{ix}+(-1)][ f(z)/((z+3)·(z+1)) ]·d_{x}[z]·d[x] ] = pi·i·f(-1) = 1
f(a) = (-a)·( 1/(pi·i) )
Lema:
Socialismo:
lim[r = 0][ ...
... int[z = ( re^{ix}+1 )^{(1/2)}][ f(z^{2})·( (z^{2}+1)/(z^{2}+(-1)) ) ]·d_{x}[z]·d[x] ] = 2pi·i·f(1) = 2
f(a) = a·(1/pi·i)
Social-Democracia:
lim[r = 0][ int[z = ( re^{ix}+1 )^{(1/2)}][ f(z^{2})/(z^{2}+(-1)) ]·d_{x}[z]·d[x] ] = pi·i·f(1) = 1
f(a) = a·(1/pi·i)
Lema:
Socialismo:
lim[r = 0][ ...
... int[z = ( re^{ix}+(-1) )^{(1/2)}][ f(z^{2})·( (z^{2}+3)/(z^{2}+1) ) ]·d_{x}[z]·d[x] ] = 2pi·f(-1) = 2
f(a) = (-a)·(1/pi)
Social-Democracia:
lim[r = 0][ int[z = ( re^{ix}+(-1) )^{(1/2)}][ f(z^{2})/(z^{2}+1) ]·d_{x}[z]·d[x] ] = pi·f(-1) = 1
f(a) = (-a)·(1/pi)
Ley:
int[ax = 0]-[1][ d_{t}[y(t,ax)] ]d[ax]+u·w(ut)·y(t,1) = (1/m)·p(t)
y(t,ax) = (1/a)·Anti-[ ( s /o(s)o/ int[ d_{ax}[ ( (-1)·w(ut)·s+(1/m)·p(t)·(a/u) )·(ax)^{2} ] ]d[s] ) ]-(ut)
Ley:
int[ax = 0]-[1][ d_{t}[y(t,ax)]^{2} ]d[ax]+u^{2}·w(ut)·( y(t,1) )^{2} = (2/m)·E(t)
y(t,ax) = (1/a)·...
...Anti-[ ( ...
... s /o(s)o/ int[ d_{ax}[ ( (-1)·w(ut)·s^{2}+(2/m)·E(t)·(a/u)^{2} )·(ax)^{2} ] ]d[s] ...
... )^{[o(s)o] (1/2)} ]-(ut)
Ley:
int[ax = 0]-[1][ d_{t}[y(t,ax)]^{2n} ]d[ax]+u^{2n}·w(ut)·( y(t,1) )^{2n} = ( (2/m)·E(t) )^{n}
y(t,ax) = (1/a)·...
...Anti-[ ( ...
... s /o(s)o/ int[ d_{ax}[ ( (-1)·w(ut)·s^{2n}+( (2/m)·E(t) )^{n}·(a/u)^{2n} )·(ax)^{2} ] ]d[s] ...
... )^{[o(s)o] (1/(2n))} ]-(ut)
Examen de mecánica integral:
Ley:
int[ax = 0]-[1][ d_{t}[y(t,ax)]^{3} ]d[ax]+u^{3}·w(ut)·( y(t,1) )^{3} = (4/m)·c·E(t)
y(t,ax) = ?
Ley:
int[ax = 0]-[1][ d_{t}[y(t,ax)]^{2} ]d[ax]+u^{2}·w(ut)·( y(t,1) )^{2} = (2/m)·c·p(t)
y(t,ax) = ?
Ley:
int[ax = 0]-[1][ d_{t}[y(t,ax)]^{2n} ]d[ax]+u^{2n}·w(ut)·( y(t,1) )^{2n} = ( (2/m)·c·p(t) )^{n}
y(t,ax) = ?
Ley:
int[ax = 0]-[1][ (m/k)·d_{t}[y(t,ax)] ]d[ax]+(1/u)·w(ut)·y(t,1) = r^{2}·(1/c)
... Anti-[ ( s /o(s)o/ int[ d_{ax}[ ( (-1)·w(ut)·s+r^{2}·(1/c)·au )·(ax)^{2} ] ]d[s] ) ]-((k/m)·(1/u)·t)
Ley:
int[ax = 0]-[1][ (m/b)·d_{t}[y(t,ax)] ]d[ax]+w(ut)·y(t,1) = ct
No hay comentarios:
Publicar un comentario