domingo, 31 de julio de 2022

super mario bros y topología y astro-física y occità y potch-hamer

[x-Mario-salto] = [x-Mario];

[y-Mario-salto] = [y-Mario];

cajas-positivo[x-Mario-salto+not(1)][y-Mario-salto+4] = 1;

cajas-positivo[x-Mario-salto][y-Mario-salto+4] = 1;

cajas-positivo[x-Mario-salto+1][y-Mario-salto+4] = 1;

while( cajas-positivo[x-Mario][y-Mario+1] == 0 )

{

Mario[x-Mario][y-Mario] = 0;

Mario[x-Mario][y-Mario+1] = 1;

[y-Mario] = [y-Mario]+1;

}

cajas-positivo[x-Mario-salto+not(1)][y-Mario-salto+4] = 0;

cajas-positivo[x-Mario-salto][y-Mario-salto+4] = 0;

cajas-positivo[x-Mario-salto+1][y-Mario-salto+4] = 0;

while( cajas-negativo[x-Mario][y-Mario+not(1)] == not(0) )

{

Mario[x-Mario][y-Mario] = 0;

Mario[x-Mario][y-Mario+not(1)] = 1;

[y-Mario] = [y-Mario]+not(1)

}


Relacions d'equivalencia algebraiques:

[n] = {< n,f(n) > : [Ef][Ex][ f(n) = n+x ] }

( < n,n > & x = 0 )

( < n,n+p > & x = p ) <==> ( < n+p,n > & x = (-p) )

Si ( ( < n,n+p > & x = p ) & ( < (n+p),(n+p)+q > & x = q ) ) ==> ( < n,n+(p+q) > & x = p+q )

[n] = {< n,f(n) > : [Ef][Ex][ f(n) = n·x ] }

( < n,n > & x = 1 )

( < n,n·p > & x = p ) <==> ( < n·p,n > & x = (1/p) )

Si ( ( < n,n·p > & x = p ) & ( < (n·p),(n·p)·q > & x = q ) ) ==> ( < n,n·(p·q) > & x = p·q )

Compactificació:

[i] = {i} [x] ( N [ || ] (-N) ) [<< A_{i}

[1] [<< A_{1}

...

[i] [<< A_{1} [ || ] ...(i)... [ || ] A_{i}

[i] = {i} [x] ( N [ || ] (1/N) ) [<< A_{i}

[1] [<< A_{1}

...

[i] [<< A_{1} [ || ] ...(i)... [ || ] A_{i}

Relació d'equivalencia de cicle:

[x] = {< x,f^{ok}(x) > : [En][Ax][ f^{on}(x) = x ] }

( < x,x > & k = n )

( < x,y > & k = p ) <==> ( < y,x > & k = (-p) )

Si ( ( < x,y > & k = p ) & ( < y,z > & k = q ) ) ==> ( < x,z > & k = p o q )

Compactificació:

[x_{i}] = {x_{i}} [x] {x_{1},...(n)...,x_{n}} [<< A_{i}

[x_{1}] [<< A_{1}

...

[x_{i}] [<< A_{1} [ || ] ...(i)... [ || ] A_{i}


Interior:

D [<< A

Adherencia interior:

C [&] ¬A != 0

Teorema:

Si [Ak][ D_{k} [<< D ] ==> ( D_{1} [ || ] ...(n)... [ || ] D_{n} ) [<< A

Si [Ak][ C_{k} >>] C ] ==> ( C_{1} [&] ...(n)... [&] C_{n} ) [&] ¬A != 0

Teorema:

Si [Ak][ D_{k} >>] D ] ==> ( D_{1} [&] ...(n)... [&] D_{n} ) [<< A

Si [Ak][ C_{k} [<< C ] ==> ( C_{1} [ || ] ...(n)... [ || ] C_{n} ) [&] ¬A != 0


Reactor:

L·d_{tt}^{2}[T(t)]+C·T(t) = R·A_{0}·e^{i·vt}

T(t) = ( 1/( C+(-L)·v^{2} ) )·R·A_{0}·e^{i·vt}

L·d_{tt}^{2}[T(t)]+(-1)·C·T(t) = R·A_{0}·e^{vt}

T(t) = ( 1/( (-C)·+L·v^{2} ) )·R·A_{0}·e^{vt}


Força logarítmica de la energía foscura:

R^{s}_{ijk} = (x_{s}/x_{k})·d_{ij}^{2}[x_{i}·x_{j}]

R_{ij}+m_{ij} = int[ (-1)·ln(x_{k}) ]d[x_{i}·x_{j}]

x_{s} = (-1) & x_{k} = x_{i}·x_{j}

R_{ij} = (-1)·x_{i}·x_{j}·ln(x_{i}·x_{j})

m_{ij} = x_{i}·x_{j}

Força exponencial de la energía foscura:

R^{s}_{ijk} = (x_{s}/x_{k})·d_{ij}^{2}[e^{(-1)·x_{i}·x_{j}}]

R_{ij}+m_{ij} = int[ (-1)·x_{k}·e^{(-1)·x_{k}} ]d[x_{i}·x_{j}]

x_{s} = x_{k} = x_{i}·x_{j}

R_{ij} = x_{i}·x_{j}·e^{(-1)·x_{i}·x_{j}}

m_{ij} = e^{(-1)·x_{i}·x_{j}}


R^{s}_{ijk} = (x_{s}/x_{k})·d_{ij}^{2}[x_{i}·x_{j}]

x_{s} = x_{k} = 1 & x_{i} = x_{j} = x(t)

Galaxia y forat negre de galaxia:

R_{ij}+m_{ij} = 2·(-i)·d_{t}[x(t)]^{2}

x(t) = e^{kt}

R_{ij}+m_{ij} = 2·(-i)·d_{t}[x(t)]

x(t) = ( 1/((-i)·t) )

Cuásar y forat negre de cuásar:

R_{ij}+m_{ij} = 2i·d_{t}[x(t)]^{2}

x(t) = e^{jt}

R_{ij}+m_{ij} = 2i·d_{t}[x(t)]

x(t) = ( 1/(it) )

El forat negre de cuásar té més energía que el forat negre de galaxia,

perque gira en el sentit contrari de l'anti-gravitació.

El forat negre de galaxia o cuásar és de dos portes que giren oposades.


Neishement y mort: d'una estrella y forat negre d'estrella:

R_{ij}+m_{ij} = 2·d_{t}[x(t)]^{2}

x(t) = e^{t}

R_{ij}+m_{ij} = 2·d_{t}[y(t)]^{2}

y(t) = e^{(-t)}

R_{ij}+m_{ij} = 2·d_{t}[x(t)]

y(t) = (1/(-t))


Cúmul y cuásar: regular y forat negre regular:

R_{ij}+m_{ij} = (-2)·d_{t}[x(t)]^{2}

x(t) = e^{it}

R_{ij}+m_{ij} = (-2)·d_{t}[y(t)]^{2}

y(t) = e^{(-i)·t}

R_{ij}+m_{ij} = (-2)·d_{t}[x(t)]

y(t) = (1/t)

Els cuásars regulars giren en sentit contrari de l'anti-gravitació.


Vos creéis que no se tiene poder ilimitado, con andar,

Vos creéis que se tiene poder ilimitado, sin andar.


E = {A: [EX][ A o Z+(-1)·( Z o A ) = X ] }

(A+B) o Z+(-1)·( Z o (A+B) ) = X+Y

(s·A) o Z+(-1)·( Z o (s·A) ) = s·X


Subespais vectorials producte:

E = {f(x): [EP(x)][ d_{x}[f(x)] = P(x) ] }

d_{x}[f(x) [o(x)o] g(x)] = P(x)·Q(x)

d_{x}[( f(x) )^{[o(x)o]s}] = ( P(x) )^{s}


E = {f(x): [EP(x)][ int[f(x)]d[x] = P(x) ] }

int[f(x)·g(x)]d[x] = P(x) [o(x)o] Q(x)

int[( f(x) )^{s}]d[x] = ( P(x) )^{[o(x)o]s}


E = {f(x): [EP(x)][ d_{x}[f(x)]·f(x) = P(x) ] }

d_{x}[f(x) [o(x)o] g(x)]·f(x)·g(x) = P(x)·Q(x)

d_{x}[( f(x) )^{[o(x)o]s}]·( f(x) )^{s} = ( P(x) )^{s}


E = {f(x): [EP(x)][ int[f(x)]d[x] [o(x)o] f(x) = P(x) ] }

int[f(x)·g(x)]d[x] [o(x)o] f(x) [o(x)o] g(x) = P(x) [o(x)o] Q(x)

int[( f(x) )^{s}]d[x] [o(x)o] ( f(x) )^{[o(x)o]s} = ( P(x) )^{[o(x)o]s}


F(x) = int[ G^{o(-1)}(0) ---> h(x) ][ ( g(x)/x ) ]d[x] ==> ...

... d_{x}[F(x)] = ( g(h(x))/h(x) )·d_{x}[h(x)]

int[ G^{o(-1)}(0) ---> h(x) ][ ( g(x)/x ) ]d[x] = ...

... G(h(x)) [o(x)o] ( (1/2)·( h(x) )^{2} )^{[o(x)o](-1)}

( (1/2)·x^{2} )^{[o(x)o](-1)} = ln(x)


Occità [o] Català

aguet [o] aquet

aguet-ça [o] aquet-ça

aguets [o] aquets

aguet-çes [o] aquet-çes


aguell [o] aquell

aguella [o] aquella

aguells [o] aquells

aguelles [o] aquelles


eth-eleth [o] el

tha-eleth [o] la

eths-eleth [o] els

thes-eleth [o] les


un-eleth [o] un

una-eleth [o] una

uns-eleth [o] uns

unes-eleth [o] unes


eth-eleth que camina-puá,

per tha-eleth tenebra,

no veu-de-puá a on va-de-puá.

tha-eleth que camina-puá,

per eth-eleth silenci,

no oeish-de-puá a on va-de-puá.


Nosautres parlems-de-puá,

de un-eleth camí que he-de-puá trobat,

que porta-puá cap a tha-eleth llibertat.

Vosautres parlez-de-puá,

de un-eleth camí que he-de-puá perdut,

que porta-puá cap a tha-eleth esclavitut.


parlû-puá

parles-puá

parla-puá

parlems-de-puá

parlez-de-puá

parlen-puá


Eth-eleth Generau s'ha-de-puá sumergit,

en eth-eleth occità.

Eth-eleth Generau s'ha-de-puá des-sumergit,

en eth-eleth català.


x·(x+y) = c

y·(y+x) = c

x = c^{( 1/( 2+[0] ) )}

y = c^{( 1/( 2+[0] ) )}


x·(x+(-y)) = c

y·(y+(-x)) = c

x = c^{( 1/( 2+]0[ ) )}

y = c^{( 1/( 2+]0[ ) )}


x^{2}·(x+3y) = c

y^{2}·(y+3x) = c

x = c^{( 1/( 3+[...(3)...[0]...(3)...] ) )}

y = c^{( 1/( 3+[...(3)...[0]...(3)...] ) )}


x^{2}·(x+(-3)·y) = c

y^{2}·((-y)+3x) = c

x = c^{( 1/( 3+[...(3)...[0]...(3)...] ) )}

y = (-1)·c^{( 1/( 3+[...(3)...[0]...(3)...] ) )}


x·(y+a) = c

y·(x+a) = c

x = c^{( 1/( 1+[...(a)...[1]...(a)...] ) )}

y = c^{( 1/( 1+[...(a)...[1]...(a)...] ) )}

No hay comentarios:

Publicar un comentario