[x-Mario-salto] = [x-Mario];
[y-Mario-salto] = [y-Mario];
cajas-positivo[x-Mario-salto+not(1)][y-Mario-salto+4] = 1;
cajas-positivo[x-Mario-salto][y-Mario-salto+4] = 1;
cajas-positivo[x-Mario-salto+1][y-Mario-salto+4] = 1;
while( cajas-positivo[x-Mario][y-Mario+1] == 0 )
{
Mario[x-Mario][y-Mario] = 0;
Mario[x-Mario][y-Mario+1] = 1;
[y-Mario] = [y-Mario]+1;
}
cajas-positivo[x-Mario-salto+not(1)][y-Mario-salto+4] = 0;
cajas-positivo[x-Mario-salto][y-Mario-salto+4] = 0;
cajas-positivo[x-Mario-salto+1][y-Mario-salto+4] = 0;
while( cajas-negativo[x-Mario][y-Mario+not(1)] == not(0) )
{
Mario[x-Mario][y-Mario] = 0;
Mario[x-Mario][y-Mario+not(1)] = 1;
[y-Mario] = [y-Mario]+not(1)
}
Relacions d'equivalencia algebraiques:
[n] = {< n,f(n) > : [Ef][Ex][ f(n) = n+x ] }
( < n,n > & x = 0 )
( < n,n+p > & x = p ) <==> ( < n+p,n > & x = (-p) )
Si ( ( < n,n+p > & x = p ) & ( < (n+p),(n+p)+q > & x = q ) ) ==> ( < n,n+(p+q) > & x = p+q )
[n] = {< n,f(n) > : [Ef][Ex][ f(n) = n·x ] }
( < n,n > & x = 1 )
( < n,n·p > & x = p ) <==> ( < n·p,n > & x = (1/p) )
Si ( ( < n,n·p > & x = p ) & ( < (n·p),(n·p)·q > & x = q ) ) ==> ( < n,n·(p·q) > & x = p·q )
Compactificació:
[i] = {i} [x] ( N [ || ] (-N) ) [<< A_{i}
[1] [<< A_{1}
...
[i] [<< A_{1} [ || ] ...(i)... [ || ] A_{i}
[i] = {i} [x] ( N [ || ] (1/N) ) [<< A_{i}
[1] [<< A_{1}
...
[i] [<< A_{1} [ || ] ...(i)... [ || ] A_{i}
Relació d'equivalencia de cicle:
[x] = {< x,f^{ok}(x) > : [En][Ax][ f^{on}(x) = x ] }
( < x,x > & k = n )
( < x,y > & k = p ) <==> ( < y,x > & k = (-p) )
Si ( ( < x,y > & k = p ) & ( < y,z > & k = q ) ) ==> ( < x,z > & k = p o q )
Compactificació:
[x_{i}] = {x_{i}} [x] {x_{1},...(n)...,x_{n}} [<< A_{i}
[x_{1}] [<< A_{1}
...
[x_{i}] [<< A_{1} [ || ] ...(i)... [ || ] A_{i}
Interior:
D [<< A
Adherencia interior:
C [&] ¬A != 0
Teorema:
Si [Ak][ D_{k} [<< D ] ==> ( D_{1} [ || ] ...(n)... [ || ] D_{n} ) [<< A
Si [Ak][ C_{k} >>] C ] ==> ( C_{1} [&] ...(n)... [&] C_{n} ) [&] ¬A != 0
Teorema:
Si [Ak][ D_{k} >>] D ] ==> ( D_{1} [&] ...(n)... [&] D_{n} ) [<< A
Si [Ak][ C_{k} [<< C ] ==> ( C_{1} [ || ] ...(n)... [ || ] C_{n} ) [&] ¬A != 0
Reactor:
L·d_{tt}^{2}[T(t)]+C·T(t) = R·A_{0}·e^{i·vt}
T(t) = ( 1/( C+(-L)·v^{2} ) )·R·A_{0}·e^{i·vt}
L·d_{tt}^{2}[T(t)]+(-1)·C·T(t) = R·A_{0}·e^{vt}
T(t) = ( 1/( (-C)·+L·v^{2} ) )·R·A_{0}·e^{vt}
Força logarítmica de la energía foscura:
R^{s}_{ijk} = (x_{s}/x_{k})·d_{ij}^{2}[x_{i}·x_{j}]
R_{ij}+m_{ij} = int[ (-1)·ln(x_{k}) ]d[x_{i}·x_{j}]
x_{s} = (-1) & x_{k} = x_{i}·x_{j}
R_{ij} = (-1)·x_{i}·x_{j}·ln(x_{i}·x_{j})
m_{ij} = x_{i}·x_{j}
Força exponencial de la energía foscura:
R^{s}_{ijk} = (x_{s}/x_{k})·d_{ij}^{2}[e^{(-1)·x_{i}·x_{j}}]
R_{ij}+m_{ij} = int[ (-1)·x_{k}·e^{(-1)·x_{k}} ]d[x_{i}·x_{j}]
x_{s} = x_{k} = x_{i}·x_{j}
R_{ij} = x_{i}·x_{j}·e^{(-1)·x_{i}·x_{j}}
m_{ij} = e^{(-1)·x_{i}·x_{j}}
R^{s}_{ijk} = (x_{s}/x_{k})·d_{ij}^{2}[x_{i}·x_{j}]
x_{s} = x_{k} = 1 & x_{i} = x_{j} = x(t)
Galaxia y forat negre de galaxia:
R_{ij}+m_{ij} = 2·(-i)·d_{t}[x(t)]^{2}
x(t) = e^{kt}
R_{ij}+m_{ij} = 2·(-i)·d_{t}[x(t)]
x(t) = ( 1/((-i)·t) )
Cuásar y forat negre de cuásar:
R_{ij}+m_{ij} = 2i·d_{t}[x(t)]^{2}
x(t) = e^{jt}
R_{ij}+m_{ij} = 2i·d_{t}[x(t)]
x(t) = ( 1/(it) )
El forat negre de cuásar té més energía que el forat negre de galaxia,
perque gira en el sentit contrari de l'anti-gravitació.
El forat negre de galaxia o cuásar és de dos portes que giren oposades.
Neishement y mort: d'una estrella y forat negre d'estrella:
R_{ij}+m_{ij} = 2·d_{t}[x(t)]^{2}
x(t) = e^{t}
R_{ij}+m_{ij} = 2·d_{t}[y(t)]^{2}
y(t) = e^{(-t)}
R_{ij}+m_{ij} = 2·d_{t}[x(t)]
y(t) = (1/(-t))
Cúmul y cuásar: regular y forat negre regular:
R_{ij}+m_{ij} = (-2)·d_{t}[x(t)]^{2}
x(t) = e^{it}
R_{ij}+m_{ij} = (-2)·d_{t}[y(t)]^{2}
y(t) = e^{(-i)·t}
R_{ij}+m_{ij} = (-2)·d_{t}[x(t)]
y(t) = (1/t)
Els cuásars regulars giren en sentit contrari de l'anti-gravitació.
Vos creéis que no se tiene poder ilimitado, con andar,
Vos creéis que se tiene poder ilimitado, sin andar.
E = {A: [EX][ A o Z+(-1)·( Z o A ) = X ] }
(A+B) o Z+(-1)·( Z o (A+B) ) = X+Y
(s·A) o Z+(-1)·( Z o (s·A) ) = s·X
Subespais vectorials producte:
E = {f(x): [EP(x)][ d_{x}[f(x)] = P(x) ] }
d_{x}[f(x) [o(x)o] g(x)] = P(x)·Q(x)
d_{x}[( f(x) )^{[o(x)o]s}] = ( P(x) )^{s}
E = {f(x): [EP(x)][ int[f(x)]d[x] = P(x) ] }
int[f(x)·g(x)]d[x] = P(x) [o(x)o] Q(x)
int[( f(x) )^{s}]d[x] = ( P(x) )^{[o(x)o]s}
E = {f(x): [EP(x)][ d_{x}[f(x)]·f(x) = P(x) ] }
d_{x}[f(x) [o(x)o] g(x)]·f(x)·g(x) = P(x)·Q(x)
d_{x}[( f(x) )^{[o(x)o]s}]·( f(x) )^{s} = ( P(x) )^{s}
E = {f(x): [EP(x)][ int[f(x)]d[x] [o(x)o] f(x) = P(x) ] }
int[f(x)·g(x)]d[x] [o(x)o] f(x) [o(x)o] g(x) = P(x) [o(x)o] Q(x)
int[( f(x) )^{s}]d[x] [o(x)o] ( f(x) )^{[o(x)o]s} = ( P(x) )^{[o(x)o]s}
F(x) = int[ G^{o(-1)}(0) ---> h(x) ][ ( g(x)/x ) ]d[x] ==> ...
... d_{x}[F(x)] = ( g(h(x))/h(x) )·d_{x}[h(x)]
int[ G^{o(-1)}(0) ---> h(x) ][ ( g(x)/x ) ]d[x] = ...
... G(h(x)) [o(x)o] ( (1/2)·( h(x) )^{2} )^{[o(x)o](-1)}
( (1/2)·x^{2} )^{[o(x)o](-1)} = ln(x)
Occità [o] Català
aguet [o] aquet
aguet-ça [o] aquet-ça
aguets [o] aquets
aguet-çes [o] aquet-çes
aguell [o] aquell
aguella [o] aquella
aguells [o] aquells
aguelles [o] aquelles
eth-eleth [o] el
tha-eleth [o] la
eths-eleth [o] els
thes-eleth [o] les
un-eleth [o] un
una-eleth [o] una
uns-eleth [o] uns
unes-eleth [o] unes
eth-eleth que camina-puá,
per tha-eleth tenebra,
no veu-de-puá a on va-de-puá.
tha-eleth que camina-puá,
per eth-eleth silenci,
no oeish-de-puá a on va-de-puá.
Nosautres parlems-de-puá,
de un-eleth camí que he-de-puá trobat,
que porta-puá cap a tha-eleth llibertat.
Vosautres parlez-de-puá,
de un-eleth camí que he-de-puá perdut,
que porta-puá cap a tha-eleth esclavitut.
parlû-puá
parles-puá
parla-puá
parlems-de-puá
parlez-de-puá
parlen-puá
Eth-eleth Generau s'ha-de-puá sumergit,
en eth-eleth occità.
Eth-eleth Generau s'ha-de-puá des-sumergit,
en eth-eleth català.
x·(x+y) = c
y·(y+x) = c
x = c^{( 1/( 2+[0] ) )}
y = c^{( 1/( 2+[0] ) )}
x·(x+(-y)) = c
y·(y+(-x)) = c
x = c^{( 1/( 2+]0[ ) )}
y = c^{( 1/( 2+]0[ ) )}
x^{2}·(x+3y) = c
y^{2}·(y+3x) = c
x = c^{( 1/( 3+[...(3)...[0]...(3)...] ) )}
y = c^{( 1/( 3+[...(3)...[0]...(3)...] ) )}
x^{2}·(x+(-3)·y) = c
y^{2}·((-y)+3x) = c
x = c^{( 1/( 3+[...(3)...[0]...(3)...] ) )}
y = (-1)·c^{( 1/( 3+[...(3)...[0]...(3)...] ) )}
x·(y+a) = c
y·(x+a) = c
x = c^{( 1/( 1+[...(a)...[1]...(a)...] ) )}
y = c^{( 1/( 1+[...(a)...[1]...(a)...] ) )}
No hay comentarios:
Publicar un comentario