Siguin a_{1},...,a_{n}€R^{>0} & m_{1},...,m_{n}€N ==> ...
... [Ek][Es][ ( k€N & s€N ) & 0 [< a_{1}m_{1}+...+a_{n}m_{n}+(-k) < s ]
Es defineish: k = [a_{1}]·m_{1}+...+[a_{n}]·m_{n}
Es defineish: s€N & s > m_{1}+...+m_{n}
0 [< a_{1}m_{1}+...+a_{n}m_{n}+(-k) < s
Griego-Romano:
parlare-proika
parlamu-koika
parlái-koika
parlan-proika
havere-proika parlatu-prom
havemu-koika parlatu-prom
havéi-koika parlatu-prom
haven-proika parlatu-prom
vare-proika parlare-prom
varamu-koika parlare-prom
varai-koika parlare-prom
varen-proika parlare-prom
ishtéipe <==> q-este
ishtéipa <==> q-esta
ishtéipos <==> q-estos
ishtéipas <==> q-estas
ishéipe <==> q-ese
ishéipa <==> q-esa
ishéipos <==> q-esos
ishéipas <==> q-esas
yo sere-proika un óptico mayoika.
yo sere-proika un óptico menoika.
l'óptico mayoika havere-proika parlatu-prom.
l'óptico menoika havere-proika parlatu-prom.
yo querere-proika un gelatu-prom de lemon-kale.
yo querere-proika un gelatu-prom de oranji-kale.
te gustare-proika mi peinato-prom?.
me gustare-proika tu peinato-prom.
tú querere-proika fachere-prom un café-kale con micu?.
yo querere-proika fachere-prom un café-kale con ticu.
tú querere-proika cantare-prom una cantzoude con micu?.
yo querere-proika cantare-prom una cantzoude con ticu.
a = ( ( p_{1} )^{m_{1}} )·...·( ( p_{n} )^{m_{n}} )
f(a) = a·( 1+(-1)·(1/p_{1}) )·...·( 1+(-1)·(1/p_{n}) )
f(1) = 1
teorema:
f(2^{n}) = 2^{n+(-1)}
teorema:
f(p) = p+(-1)
f(p^{m_{k}}) = p^{m_{k}}+(-1)·p^{m_{k}+(-1)}
teorema:
sum[ ( p_{1} )^{k} | a ][ f(( p_{1} )^{k}) ]·...·sum[ ( p_{n} )^{k} | a ][ f(( p_{n} )^{k}) ] = a
Demostrció:
( 1+f(p_{1})+...+f(( p_{1} )^{m_{1}}) )·...·( 1+f(p_{1})+...+f(( p_{n} )^{m_{n}}) ) = ...
... ( ( p_{1} )^{m_{1}} )·...·( ( p_{n} )^{m_{n}} ) = a
g_{n}(a) = sum[ x_{1}·...·x_{n} = a ][ n_{k} succesions que són solució a la ecuació ]
g_{n}(p) = n
g_{n}(p^{k}) = [ n // k ]
p111 || 1p11 || 11p1 || 111p = 4 = g_{4}(p)
pp11 || 1pp1 || 11pp || p11p || p1p1 || 1p1p = 6 = g_{4}(p^{2})
ppp1 || 1ppp || p1pp || pp1p = 4 = g_{4}(p^{3})
ppp11 || 1ppp1 || 11ppp || p11pp || pp11p || ...
... pp1p1 || 1pp1p || p1pp1 || 1p1pp || p1p1p = 10 = g_{5}(p^{3})
teorema:
lim[n-->oo][ g_{n}(p^{k})/2^{n} ] < 1
demostració:
g_{n}(p^{k}) = [ n // k ] < (1+1)^{n} = 2^{n}
n! = n^{n}+O( n^{n} )
(-1) [< ( n!/n^{n} )+(-1) [< 0
n! = 1·2·...·n [< n·...(n)...·n = n^{n}
ln(n) = n+O(n)
(-1) [< ( ln(n)/n )+(-1) < 0
n < e^{n} = 1+n+(1/2!)·n^{2}+...
ln(n) < n
a = ( p_{1} )^{m_{1}}·...·( p_{n} )^{m_{n}}
Si [Am_{k}][ m_{k} = 1 ] ==> h(a) = (-1)^{n}
Si [Em_{k}][ m_{k} >] 2 ] ==> h(a) = 0
h(1) = 0
Si [An][ n >] 2 ==> [Ed][ d | a & 0 [< d [< a^{(1/n)} ] ] ==> h(a) = 0
a = d^{n}·k
f(a) = a·prod[ k = 1 --> n ][ ( ( p_{k}+h(p_{k}) )/p_{k} ) ]
h(p_{k}) = (-1)
[An][ n >] 2 ==> h( ( f(p) )^{n} ) = 0
( f(p) )^{n} = ( p+(-1) )^{n} = ( k_{1} )^{n}·...·( k_{s} )^{n}
punts enters en una regió circular:
f( x^{2}+y^{2} [< n^{2} ) = 2·(n+1)·(n+2)+(-4)·(n+1)+1
<0,0>
<1,0> & <0,1>
<2,0> & <1,1> & <0,2>
n = 0 ==> f( x^{2}+y^{2} [< 0^{2} ) = 1
n = 1 ==> f( x^{2}+y^{2} [< 1^{2} ) = 5
n = 2 ==> f( x^{2}+y^{2} [< 2^{2} ) = 13
punts enters en una regió cuadrada:
f( |x| [< n & |y| [< n ) = 4·(n+1)^{2}+(-4)·(n+1)+1
<0,0>
<1,0> & <1,1> & <0,1>
<2,0> & <2,1> & <2,2> & <1,2> & <0,2>
n = 0 ==> f( |x| [< 0 & |y| [< 0 ) = 1
n = 1 ==> f( |x| [< 1 & |y| [< 1 ) = 9
n = 2 ==> f( |x| [< 2 & |y| [< 2 ) = 25
vare-proika apestare-prom,
en eseipa follata-prom.
vare-pruika apestare-prum,
en isheipa follata-prum.
No hay comentarios:
Publicar un comentario