viernes, 21 de agosto de 2020

exponencial de potencial

x = y^{y^{p}}

ln(x) = y^{p}·ln(y)

ln(x) = ln[p](y)

e[(-p)]( ln(x) ) = y

x = e^{ln[p](y)}


x = y^{p}·e^{y}

x = e[p](y)

ln[(-p)](x) = y


x = y^{p}·ln(y)

x = ln[p](y)

e[(-p)](x) = y


d_{x}[x^{p}·ln(x)] = px^{p+(-1)}·ln(x)+x^{p+(-1)}

d_{x}[x^{(-p)}·e^{x}] = (-p)·x^{(-p)+(-1)}·e^{x}+x^{(-p)}·e^{x}


d_{x}[x^{(-p)}·ln(x)] = (-p)·x^{(-p)+(-1)}·ln(x)+x^{(-p)+(-1)} )

d_{x}[x^{p}·e^{x}] = px^{p+(-1)}·e^{x}+x^{p}·e^{x}

No hay comentarios:

Publicar un comentario