x = y^{y^{p}}
ln(x) = y^{p}·ln(y)
ln(x) = ln[p](y)
e[(-p)]( ln(x) ) = y
x = e^{ln[p](y)}
x = y^{p}·e^{y}
x = e[p](y)
ln[(-p)](x) = y
x = y^{p}·ln(y)
x = ln[p](y)
e[(-p)](x) = y
d_{x}[x^{p}·ln(x)] = px^{p+(-1)}·ln(x)+x^{p+(-1)}
d_{x}[x^{(-p)}·e^{x}] = (-p)·x^{(-p)+(-1)}·e^{x}+x^{(-p)}·e^{x}
d_{x}[x^{(-p)}·ln(x)] = (-p)·x^{(-p)+(-1)}·ln(x)+x^{(-p)+(-1)} )
d_{x}[x^{p}·e^{x}] = px^{p+(-1)}·e^{x}+x^{p}·e^{x}
No hay comentarios:
Publicar un comentario