a(n) = (x/n)
d_{x}[x^{n}] = ( 1/a(n) )·x^{n}
∫ [ x^{n} ] d[x] = a(n+1)·x^{n}
b(n) = (1/n)
d_{x}[e^{nx}] = ( 1/b(n) )·e^{nx}
∫ [ e^{nx} ] d[x] = b(n)·e^{nx}
c(sin(nx)) = n·( 1+(-1)·( sin(nx) )^{2} )^{(1/2)}
d_{x}[sin(nx)] = c(sin(nx))
∫ [ sin(nx) ] d[x] = (-1)·c(sin(nx))
c(cos(nx)) = n·( 1+(-1)·( cos(nx) )^{2} )^{(1/2)}
d_{x}[cos(nx)] = (-1)·c(cos(nx))
∫ [ cos(nx) ] d[x] = c(cos(nx))
u(ln(x)) = e^{ln(x)}
d_{x}[ln(x)] = (1/u(ln(x)))
∫ [ ln(x) ] d[x] = ln(x)·u(ln(x))+(-1)·u(ln(x))
No hay comentarios:
Publicar un comentario