jueves, 20 de agosto de 2020

mesura

a(n) = (x/n)

d_{x}[x^{n}] = ( 1/a(n) )·x^{n}

∫ [ x^{n} ] d[x] = a(n+1)·x^{n}

b(n) = (1/n)

d_{x}[e^{nx}] = ( 1/b(n) )·e^{nx}

∫ [ e^{nx} ] d[x] = b(n)·e^{nx}

c(sin(nx)) = n·( 1+(-1)·( sin(nx) )^{2} )^{(1/2)}

d_{x}[sin(nx)] = c(sin(nx))

∫ [ sin(nx) ] d[x] = (-1)·c(sin(nx))

c(cos(nx)) = n·( 1+(-1)·( cos(nx) )^{2} )^{(1/2)}

d_{x}[cos(nx)] = (-1)·c(cos(nx))

∫ [ cos(nx) ] d[x] = c(cos(nx))

u(ln(x)) = e^{ln(x)}

d_{x}[ln(x)] = (1/u(ln(x)))

∫ [ ln(x) ] d[x] = ln(x)·u(ln(x))+(-1)·u(ln(x))

No hay comentarios:

Publicar un comentario