jueves, 10 de septiembre de 2020

bijeccions

f: R-{1,2} ----> R-{m,(mk)} & x --> f(x) = (mk+(-m))x+(-1)(mk+(-2)m)

(mk+(-m))+(-1)(mk+(-2)m) = m

(2mk+(-2)m)+(-1)(mk+(-2)m) = mk


f: R-{1,2} ----> R-{m,(mk+p)} & x --> f(x) = (mk+(-m)+p)x+(-1)(mk+(-2)m+p)

(mk+(-m)+p)+(-1)(mk+(-2)m+p) = m

(2mk+(-2)m+2p)+(-1)(mk+(-2)m+p) = mk+p



f: R-{1,3} ----> R-{m,(mk+p)} & x --> f(x) = (mk+(-m)+p)( (x+1)/2 )+(-1)(mk+(-2)m+p)

((1+1)/2) = 1

((3+1)/2) = 2


f: R-{1,4} ----> R-{m,(mk+p)} & x --> f(x) = (mk+(-m)+p)( (x+2)/3 )+(-1)(mk+(-2)m+p)

((1+2)/3) = 1

((4+2)/3) = 2


f: R-{1,n} ----> R-{m,(mk+p)} & x --> f(x) = (mk+(-m)+p)( (x+(n+(-2)))/(n+(-1)) )+(-1)(mk+(-2)m+p)

(1+(n+(-2)))/(n+(-1)) = 1

(n+(n+(-2)))/(n+(-1)) = 2


f: R-{1,4} ----> R-{4,16} & x --> f(x) = 12·( (x+2)/3 )+(-8) = 4x

f: R-{1,3} ----> R-{3,9} & x --> f(x) = 6·( (x+1)/2 )+(-3) = 3x

No hay comentarios:

Publicar un comentario