jueves, 10 de septiembre de 2020

bijeccions

f: R-{1,2} ----> R-{3,3k} & x --> f(x) = (3k+(-3))x+(-1)(3k+(-6))

(3k+(-3))+(-1)(3k+(-6)) = 3

(6k+(-6))+(-1)(3k+(-6)) = 3k


f: R-{1,2} ----> R-{3,(3k+1)} & x --> f(x) = (3k+(-2))x+(-1)(3k+(-5))

(3k+(-2))+(-1)(3k+(-5)) = 3

(6k+(-4))+(-1)(3k+(-5)) = 3k+1


f: R-{1,2} ----> R-{3,(3k+2)} & x --> f(x) = (3k+(-1))x+(-1)(3k+(-4))

(3k+(-1))+(-1)(3k+(-4)) = 3

(6k+(-2))+(-1)(3k+(-4)) = 3k+2

No hay comentarios:

Publicar un comentario