viernes, 10 de mayo de 2024

física-mecánica-cinemática y Ley y teoría-de-cuerdas y química-genética-medicina

Teoría de Cinemática:

Movimiento rectilíneo uniforme:

Principio: [ de Velocidad constante ]

[Ev][ d_{t}[x(t)] = v ]

Ley: [ de Posición ]

x(t) = vt+h

Deducción:

x(t) = int[ d_{t}[x] ]d[t] = int[v]d[t]  = v·int[1]d[t]= vt+h


Movimiento rectilíneo uniformemente acelerado:

Principio: [ de Aceleración constante ]

[Ea][ d_{tt}^{2}[x(t)] = a ]

Ley: [ de Velocidad ]

d_{t}[x(t)] = at+v

Deducción:

d_{t}[x(t)] = int[ d_{tt}^{2}[x(t)] ]d[t] = int[a]d[t]  = a·int[1]d[t]= at+v

Ley: [ de Posición ]

x(t) = a·(1/2)·t^{2}+vt+h

Deducción:

x(t) = int[ d_{t}[x(t)] ]d[t] = int[at+v]d[t]  = int[at]d[t]+int[v]d[t]= ...

... a·int[t]d[t]+v·int[1]d[t] = a·(1/2)·t^{2}+vt+h


Ley:

( El Principio de Aceleración constante )

... implica ... 

( El Principio de Velocidad constante ):

Si a = 0 ==> [Ev][ d_{t}[x(t)] = v ]

Deducción:

d_{t}[x(t)] = at+v = 0·t+v = v


Movimiento angular uniforme:

Principio: [ de Velocidad angular constante ]

[Eu][ d_{t}[w(t)] = (v/r) = u ]

Ley: [ de posición angular ]

w(t) = ut+s

Deducción:

w(t) = int[ d_{t}[w] ]d[t] = int[u]d[t]  = u·int[1]d[t]= ut+s


Movimiento angular uniformemente acelerado:

Principio: [ de Aceleración angular constante ]

[Eb][ d_{tt}^{2}[w(t)] = (a/r) = b ]

Ley: [ de Velocidad angular ]

d_{t}[w(t)] = bt+u

Deducción:

d_{t}[w(t)] = int[ d_{tt}^{2}[w(t)] ]d[t] = int[b]d[t]  = b·int[1]d[t]= bt+u

Ley: [ de posición angular ]

w(t) = b·(1/2)·t^{2}+ut+s

Deducción:

w(t) = int[ d_{t}[w(t)] ]d[t] = int[bt+u]d[t]  = int[bt]d[t]+int[u]d[t]= ...

... b·int[t]d[t]+u·int[1]d[t] = b·(1/2)·t^{2}+ut+s


Ley:

( El Principio de Aceleración angular constante )

... implica ...

( El Principio de Velocidad angular constante ):

Si b = 0 ==> [Eu][ d_{t}[w(t)] = (v/r) = u ]

Deducción:

d_{t}[w(t)] = bt+u = 0·t+u = 0+u = u = (r/r)·u = (1/r)·(ru) = (v/r) = u


Ley:

( El Principio de Velocidad constante )

... sí, y solo sí ...

( El Principio de Velocidad angular constante ):

[Ev][ d_{t}[x(t)] = v ] <==> [Eu][ d_{t}[w(t)] = (v/r) = u ]

Deducción:

[==>] Si d_{t}[x(t)] = v ==>

(1/r)·d_{t}[x(t)] = (v/r)

d_{t}[w(t)] = d_{t}[(1/r)·x(t)] = (1/r)·d_{t}[x(t)] = (v/r) = u

[<==] Si d_{t}[w(t)] = (v/r) = u ==>

r·d_{t}[w(t)] = r·(v/r)

d_{t}[x(t)] = d_{t}[r·w(t)] = r·d_{t}[w(t)] = r·(v/r) = ( r·(1/r) )·v = 1·v = v

Ley:

( El Principio de Aceleración constante )

... sí, y solo sí ...

( El Principio de Aceleración angular constante )

[Ea][ d_{tt}^{2}[x(t)] = a ] <==> [Eb][ d_{tt}^{2}[w(t)] = (a/r) = b ]

Deducción:

[==>] Si d_{tt}^{2}[x(t)] = a ==>

(1/r)·d_{tt}^{2}[x(t)] = (a/r)

d_{tt}^{2}[w(t)] = d_{tt}^{2}[(1/r)·x(t)] = (1/r)·d_{tt}^{2}[x(t)] = (a/r) = b

[<==] Si d_{tt}^{2}[w(t)] = (a/r) = b ==>

r·d_{tt}^{2}[w(t)] = r·(a/r)

d_{tt}^{2}[x(t)] = d_{tt}^{2}[r·w(t)] = r·d_{tt}^{2}[w(t)] = r·(a/r) = ( r·(1/r) )·a = 1·a = a


Problemas de Cinemática:

Ley:

Si ( x(t) = (-v)·t+h & y(t) = wt ) ==> ( [1] & [2] )

[1] y(t_{k}) = x(t_{k}) <==> t_{k} = ( h/(v+w) )

[2] [Ea][ d_{t}[y(t_{j})] = d_{t}[x(t_{j})]+at_{j} <==> t_{j} = ( (v+w)/a ) ]

Deducción:

[1]

[==>] Si y(t_{k}) = x(t_{k}) ==>

wt_{k} = (-v)·t_{k}+h

vt_{k}+wt_{k} = vt_{k}+( (-v)·t_{k}+h )

(v+w)·t_{k} = vt_{k}+wt_{k} = vt_{k}+( (-v)·t_{k}+h ) = ( vt_{k}+(-v)·t_{k} )+h = 0+h = h

(v+w)·t_{k} = h

( 1/(v+w) )·( (v+w)·t_{k} ) = ( h/(v+w) )

t_{k} = 1·t_{k} = ( ( 1/(v+w) )·(v+w) )·t_{k} = ( 1/(v+w) )·( (v+w)·t_{k} ) = ( h/(v+w) )

[<==] Si t_{k} = ( h/(v+w) ) ==>

(v+w)·t_{k} = (v+w)·( h/(v+w) ) = ( (v+w)·( 1/(v+w) ) )·h = 1·h = h

(v+w)·t_{k} = h

vt_{k}+wt_{k} = (v+w)·t_{k} = h = 0+h = ( vt_{k}+(-v)·t_{k} )+h = vt_{k}+( (-v)·t_{k}+h )

vt_{k}+wt_{k} = vt_{k}+( (-v)·t_{k}+h )

wt_{k} = ( (-v)·t_{k}+h )

y(t_{k}) = x(t_{k})

[2]

d_{t}[y(t)] = d_{t}[wt] = w·d_{t}[t] = w·1 = w

d_{t}[x(t)] = d_{t}[(-v)·t+h] = d_{t}[(-v)·t]+d_{t}[h] = (-v)·d_{t}[t]+d_{t}[h] = (-v)·1+0 = (-v)

[==>] Si d_{t}[y(t_{j})] = d_{t}[x(t_{j})]+at_{j} ==>

w = (-v)+at_{j}

v+w = v+( (-v)+at_{j} )

v+w = v+( (-v)+at_{j} ) = ( v+(-v) )+at_{j} = 0+at_{j} = at_{j}

v+w = at_{j}

at_{j} = v+w

(1/a)·( at_{j} ) = ( (v+w)/a )

t_{j} = 1·t_{j} = ( (1/a)·a )·t_{j} = (1/a)·( at_{j} ) = ( (v+w)/a )

[<==] Si t_{j} = ( (v+w)/a )

at_{j} = a·( (v+w)/a ) = ( a·(1/a) )·(v+w) = 1·(v+w) = v+w

at_{j} = v+w

(-v)+at_{j} = (-v)+(v+w)

(-v)+at_{j} = (-v)+(v+w) = ( (-v)+v )+w = 0+w = w 

(-v)+at_{j} = w

w = (-v)+at_{j}

d_{t}[y(t_{j})] = d_{t}[x(t_{j})]+at_{j}


Ley:

Si ( x(t) = ( (-a)·(1/2) )·t^{2}+h & y(t) = ( b·(1/2) )·t^{2} ) ==> ( [1] & [2] )

[1] y(t_{k}) = x(t_{k}) <==> t_{k} = ( (2h)/(a+b) )^{(1/2)}

[2] [Ev][ d_{t}[y(t_{j})] = d_{t}[x(t_{j})]+v <==> t_{j} = ( v/(a+b) ) ]

Deducción:

[1]

[==>] Si y(t_{k}) = x(t_{k}) ==>

( b·(1/2) )·( t_{k} )^{2} = ( (-a)·(1/2) )·( t_{k} )^{2}+h

2·( ( b·(1/2) )·( t_{k} )^{2} ) = 2·( ( (-a)·(1/2) )·( t_{k} )^{2}+h )

2·( ( b·(1/2) )·( t_{k} )^{2} ) = 2·( ( (-a)·(1/2) )·( t_{k} )^{2}+h ) = 2·( ( (-a)·(1/2) )·( t_{k} )^{2} )+2h

b·( t_{k} )^{2} = (-a)·( t_{k} )^{2}+2h

a·( t_{k} )^{2}+b·( t_{k} )^{2} = a·( t_{k} )^{2}+( (-a)·( t_{k} )^{2}+2h )

(a+b)·( t_{k} )^{2} = a·( t_{k} )^{2}+b·( t_{k} )^{2} = a·( t_{k} )^{2}+( (-a)·( t_{k} )^{2}+2h ) = ...

... ( a·( t_{k} )^{2}+(-a)·( t_{k} )^{2} )+2h = 0+2h = 2h

(a+b)·( t_{k} )^{2} = 2h

(1/(a+b))·( (a+b)·( t_{k} )^{2} ) = ( (2h)/(a+b) )

( t_{k} )^{2} = 1·( t_{k} )^{2} = ( (1/(a+b))·(a+b) )·( t_{k} )^{2} = ...

... (1/(a+b))·( (a+b)·( t_{k} )^{2} ) = ( (2h)/(a+b) )

( t_{k} )^{2} = ( (2h)/(a+b) )

( t_{k} )^{(2/2)} = ( (2h)/(a+b) )^{(1/2)}

t_{k} = ( t_{k} )^{1}= ( t_{k} )^{(2/2)} = ( (2h)/(a+b) )^{(1/2)}

t_{k} = ( (2h)/(a+b) )^{(1/2)}

[<==] Si t_{k} = ( (2h)/(a+b) )^{(1/2)}

( t_{k} )^{2} = ( (2h)/(a+b) )^{(2/2)}

( t_{k} )^{2} = ( (2h)/(a+b) )^{(2/2)} = ( (2h)/(a+b) )^{1} = ( (2h)/(a+b) )

( t_{k} )^{2} = ( (2h)/(a+b) )

a·( t_{k} )^{2}+b·( t_{k} )^{2} = (a+b)·( t_{k} )^{2} = ...

... (a+b)·( (2h)/(a+b) )  = ( (a+b)/(a+b) )·2h = 1·2h = 2h

a·( t_{k} )^{2}+b·( t_{k} )^{2} = 2h

(-a)·( t_{k} )^{2}+( a·( t_{k} )^{2}+b·( t_{k} )^{2} ) = (-a)·( t_{k} )^{2}+2h

b·( t_{k} )^{2} = 0+b·( t_{k} )^{2} = ( (-a)·( t_{k} )^{2}+a·( t_{k} )^{2} )+b·( t_{k} )^{2} = ...

... (-a)·( t_{k} )^{2}+( a·( t_{k} )^{2}+b·( t_{k} )^{2} ) = (-a)·( t_{k} )^{2}+2h

b·( t_{k} )^{2} = (-a)·( t_{k} )^{2}+2h

(1/2)·( b·( t_{k} )^{2} ) = (1/2)·( (-a)·( t_{k} )^{2}+2h )

( b·(1/2) )·( t_{k} )^{2} = ( (-a)·(1/2) )·( t_{k} )^{2}+h

y(t_{k}) = x(t_{k})

[2]

d_{t}[y(t)] = d_{t}[ ( (-a)·(1/2) )·t^{2}+h ] = d_{t}[ (-a)·( (1/2)·t^{2} )+h ] = ...

... d_{t}[ (-a)·( (1/2)·t^{2} ) ]+d_{t}[h] = (-a)·d_{t}[ ( (1/2)·t^{2} ) ]+d_{t}[h] = (-a)·t+0 = (-a)·t 

d_{t}[x(t)] = d_{t}[ ( b·(1/2) )·t^{2} ] = d_{t}[ b·( (1/2)·t^{2} ) ] = b·d_{t}[ (1/2)·t^{2} ] = bt


Ley:

Si ( x(t) = (-v)·t+h & y(t) = ( a·(1/2) )·t^{2} ) ==> ( [1] & [2] )

[1] y(t_{k}) = x(t_{k}) <==> t_{k} = (1/a)·( (-v)+( v^{2}+2ah )^{(1/2)} )

[2] d_{t}[y(t_{k})] = d_{t}[x(t_{k})]+( v^{2}+2ah )^{(1/2)}

Deducción:

[1]

[==>] Si y(t_{k}) = x(t_{k}) ==>

( a·(1/2) )·( t_{k} )^{2} = (-v)·t_{k}+h

vt+( a·(1/2) )·( t_{k} )^{2} = vt_{k}+( (-v)·t_{k}+h )

( a·(1/2) )·( t_{k} )^{2}+vt_{k} = vt_{k}+( a·(1/2) )·( t_{k} )^{2} = ...

... vt_{k}+( (-v)·t_{k}+h ) = ( vt_{k}+(-v)·t_{k} )+h = 0+h = h

( a·(1/2) )·( t_{k} )^{2}+vt_{k} = h

( a·(1/2) )·( t_{k} )^{2}+vt_{k}+(-h) = h+(-h)

( a·(1/2) )·( t_{k} )^{2}+vt_{k}+(-h) = h+(-h) = 0

( a·(1/2) )·( t_{k} )^{2}+vt_{k}+(-h) = 0

t_{k} = (2/2a)·( (-v)+( v^{2}+4·(1/2)·ah )^{(1/2)} )

t_{k} = (1/a)·( (-v)+( v^{2}+2ah )^{(1/2)} )

[<==] Si t_{k} = (1/a)·( (-v)+( v^{2}+2ah )^{(1/2)} ) ==>

t_{k} = (2/2a)·( (-v)+( v^{2}+4·(1/2)·ah )^{(1/2)} )

( a·(1/2) )·( t_{k} )^{2}+vt_{k}+(-h) = 0

( a·(1/2) )·( t_{k} )^{2}+vt_{k}+(-h)+h = 0+h

vt_{k}+( a·(1/2) )·( t_{k} )^{2} = ( a·(1/2) )·( t_{k} )^{2}+vt_{k} = ...

... ( a·(1/2) )·( t_{k} )^{2}+vt_{k}+0 = ( a·(1/2) )·( t_{k} )^{2}+vt_{k}+(-h)+h = 0+h = h

vt_{k}+( a·(1/2) )·( t_{k} )^{2} = h

(-v)·t_{k}+( vt_{k}+( a·(1/2) )·( t_{k} )^{2} ) = (-v)·t_{k}+h

( a·(1/2) )·( t_{k} )^{2} = 0+( a·(1/2) )·( t_{k} )^{2} = ...

... ( (-v)·t_{k}+vt_{k} )+( a·(1/2) )·( t_{k} )^{2} = (-v)·t_{k}+( vt_{k}+( a·(1/2) )·( t_{k} )^{2} ) = ...

... (-v)·t_{k}+h

( a·(1/2) )·( t_{k} )^{2} = (-v)·t_{k}+h

y(t_{k}) = x(t_{k})


Ley:

Si ( d_{t}[x(t)]+d_{t}[y(t)] = at & d_{t}[x(t)]+(-1)·d_{t}[y(t)] = bt ) ==>

[1:a] d_{t}[x(t)] = (1/2)·(a+b)·t

[1:b] d_{t}[y(t)] = (1/2)·(a+(-b))·t

[2:a] x(t) = (1/4)·(a+b)·t^{2}

[2:b] y(t) = (1/4)·(a+(-b))·t^{2}

[3:a] d_{tt}^{2}[x(t)] = (1/2)·(a+b)

[3:b] d_{tt}^{2}[y(t)] = (1/2)·(a+(-b))

Deducción:

[1:a] Si ( d_{t}[x(t)]+d_{t}[y(t)] = at & d_{t}[x(t)]+(-1)·d_{t}[y(t)] = bt ) ==>

2·d_{t}[x(t)]+( d_{t}[y(t)]+(-1)·d_{t}[y(t)] ) = at+bt

2·d_{t}[x(t)]+0 = 2·d_{t}[x(t)]+( d_{t}[y(t)]+(-1)·d_{t}[y(t)] ) = at+bt = (a+b)·t

2·d_{t}[x(t)] = (a+b)·t

(1/2)·( 2·d_{t}[x(t)] ) = (1/2)·(a+b)·t 

d_{t}[x(t)] = 1·d_{t}[x(t)] = (2/2)·d_{t}[x(t)] = (1/2)·( 2·d_{t}[x(t)] ) = (1/2)·(a+b)·t

d_{t}[x(t)] = (1/2)·(a+b)·t


Ley:

Si x(t) = ( d^{n}+(vt)^{n} )^{(1/n)} ==> ( [1] & [2] )

[1] d_{t}[x] = x^{1+(-n)}·(vt)^{n+(-1)}·v

[2] d_{tt}^{2}[x] = ...

... ( (1+(-n))·x^{1+(-1)·2n}·(vt)^{2n+(-2)}+x^{1+(-n)}·(n+(-1))·(vt)^{n+(-2)} )·v^{2}

Deducción:

[1] d_{t}[x] = d_{t}[ ( d^{n}+(vt)^{n} )^{(1/n)} ] = ...

... d_{(vt)^{n}}[ ( d^{n}+(vt)^{n} )^{(1/n)} ]·d_{vt}[ (vt)^{n} ]·d_{t}[vt] = ...

... (1/n)·( d^{n}+(vt)^{n} )^{(1/n)+(-1)}·n·(vt)^{n+(-1)}·v = ...

... ( d^{n}+(vt)^{n} )^{( (1+(-n))/n )}·(vt)^{n+(-1)}·v = x^{1+(-n)}·(vt)^{n+(-1)}·v

[2] d_{tt}^{2}[x] = d_{t}[ d_{t}[x] ] = d_{t}[ x^{1+(-n)}·(vt)^{n+(-1)}·v ] = ...

... d_{t}[ x^{1+(-n)}·(vt)^{n+(-1)} ]·v = ...

... ( d_{t}[ x^{1+(-n)} ]·(vt)^{n+(-1)}+x^{1+(-n)}·d_{t}[ (vt)^{n+(-1)} ] )·v = ...

... ( d_{x}[ x^{1+(-n)} ]·d_{t}[x]·(vt)^{n+(-1)}+x^{1+(-n)}·d_{vt}[ (vt)^{n+(-1)} ]·d_{t}[vt] )·v


Ley:

Si x(t) = ( d^{2}+(-1)·(vt)^{2} )^{(1/2)}+vt ==>

x(t) = d <==> ( t = 0 || t = (d/v) )

x(t_{k}) es máxima en t_{k} = (1/2)^{(1/2)}·(d/v)

x(t_{k}) = 2^{(1/2)}·d


Ley:

Sea ( d_{t}[y] = v & d_{t}[x] = uy ) ==> 

x(y) = (u/v)·(1/2)·y^{2}

y(t) = vt

d_{tt}^{2}[x] = uv

d_{t}[x] = uvt

x(t) = uv·(1/2)·t^{2}

Deducción:

d[y] = v·d[t]

d[x] = uy·d[t]

d[x] = (u/v)·y·d[y]


Irodov-Garriga problems de cinemática de rotación uniforme:

Ley:

Sea d_{t}[w(t)] = d_{t}[a(t)]+d_{t}[b(t)] ==>

Si ( d_{t}[a(t)] = (v/h) & d_{t}[b(t)] = (v/r)·a(t) ) ==>

a(t) = (v/h)·t

b(t) = (v/r)·(v/h)·(1/2)·t^{2}

d_{t}[w(t)] = (v/h)·( 1+(v/r)·t )

d_{tt}^{2}[w(t)] = (v/r)·(v/h)

Ley:

Sea d_{t}[w(t)] = d_{t}[a(t)]+d_{t}[b(t)]+d_{t}[c(t)] ==>

Si ( d_{t}[a(t)] = (v/h) & d_{t}[b(t)] = (u/h) & d_{t}[c(t)] = (v/r)·a(t)+(u/r)·b(t) ) ) ==>

a(t) = (v/h)·t

b(t) = (u/h)·t

c(t) = (1/r)·(1/h)·( v^{2}+u^{2} )·(1/2)·t^{2}

d_{t}[w(t)] = (1/h)·( (v+u)+(1/r)·( v^{2}+u^{2} )·t )

d_{tt}^{2}[w(t)] = (1/r)·(1/h)·( v^{2}+u^{2} )

Ley:

Sea d_{t}[w(t)] = d_{t}[a(t)]+d_{t}[b(t)] ==>

Si ( d_{t}[a(t)] = (v/h) & d_{t}[b(t)] = (u/r)·( s(t) )^{n+1} & d_{t}[s(t)] = (u/r)·( 1/s(t) )^{n} ) ==>

a(t) = (v/h)·t

b(t) = (n+1)·(u/r)^{2}·(1/2)·t^{2}

d_{t}[w(t)] = (v/h)+(n+1)·(u/r)^{2}·t

d_{tt}^{2}[w(t)] = (n+1)·(u/r)^{2}

Deducción:

( s(t) )^{n+1} = (n+1)·(u/r)·t

Ley:

Sea d_{t}[w(t)] = d_{t}[a(t)]+d_{t}[b(t)] ==>

Si ( d_{t}[a(t)] = (v/h) & d_{t}[b(t)] = (u/r)·e^{n·s(t)} & d_{t}[s(t)] = (u/r)·e^{(-n)·s(t)} ) ==>

a(t) = (v/h)·t

b(t) = n·(u/r)^{2}·(1/2)·t^{2}

d_{t}[w(t)] = (v/h)+n·(u/r)^{2}·t

d_{tt}^{2}[w(t)] = n·(u/r)^{2}

Deducción:

e^{n·s(t)} = n·(u/r)·t

Ley:

Naces en la Tierra que es el Malo,

porque no has estudiado,

y no condenas,

en no tener motivo de energía,

y no puedes estar en los Buenos.

Resucitas en el Cielo de Jûanat-Hád o en el Paraíso de Júpiter que son los Buenos,

porque has estudiado,

y condenas,

en tener motivo de energía,

y no puedes estar en el Malo.

Anexo:

Primero viene el Malo y después viene el Bueno.


Momento de Inercia de un anillo:

Ley:

I_{z} = m·(1/2)·r

Deducción:

I_{z} = int[x = 0]-[r][ ( m/(2pi·r) )·2pi·x ]d[x]

Momento de Inercia de un disco:

Ley:

I_{z} = m·(1/3)·r

Deducción:

I_{z} = int[x = 0]-[r][ ( m/(pi·r^{2}) )·pi·x^{2} ]d[x]

Momento de Inercia de una bola esférica:

Ley:

I_{z} = m·(1/4)·r

Deducción:

I_{z} = int[x = 0]-[r][ ( m/( (4/3)·pi·r^{3} ) )·(4/3)·pi·x^{3} ]d[x]


Momento de Inercia de una barra:

Ley:

r = radio de la anillo circunscrito = longitud de la barra.

I_{z} = m·(1/2)·r

Deducción:

I_{z} = int[x = 0]-[r][ (m/z)·x ]d[x]

Momento de Inercia de un rectángulo cuadrado:

Ley:

r = radio del disco inscrito.

I_{z} = m·(1/4)·r

Deducción:

I_{z} = int[y = 0]-[r]-int[x = 0]-[r][ (m/r^{3})·xy ]d[x]d[y]

Momento de Inercia de un rectángulo cúbico:

Ley:

r = radio de la esfera inscrita.

I_{z} = m·(1/8)·r

Deducción:

I_{z} = int[z = 0]-[r]-int[y = 0]-[r]-int[x = 0]-[r][ (m/r^{5})·xyz ]d[x]d[y]d[z]


Ley:

m·d_{t}[x(t)] = I_{z}·d_{t}[w(t)]

m·d_{tt}^{2}[x(t)] = d_{t}[I_{z}]·d_{t}[w(t)]+I_{z}·d_{tt}^{2}[w(t)]

m·x(t) = int[ I_{z} ]d[t] [o(t)o] w(t)

Ley:

Sea I_{z} = m·(1/n)·r ==> 

Si d_{t}[w(t)] = (v/h)·w(t) ==> 

w(t) = e^{(v/h)·t}

d_{t}[x(t)] = (1/n)·r·(v/h)·e^{(v/h)·t}

x(t) = (1/n)·re^{(v/h)·t}

d_{tt}^{2}[x(t)] = (1/n)·r·(v/h)^{2}·e^{(v/h)·t}

Ley:

Sea I_{z} = m·(1/n)·(vt) ==> 

Si d_{t}[w(t)] = (v/h)·w(t) ==> 

w(t) = e^{(v/h)·t}

d_{t}[x(t)] = (1/n)·(vt)·(v/h)·e^{(v/h)·t}

x(t) = (1/n)·h·( (v/h)·t )^{2}·er-h[2]( (v/h)·t )

d_{tt}^{2}[x(t)] = (1/n)·v·(v/h)·( 1+(v/h)·t )·e^{(v/h)·t}


Decret-Lley:

Parlament de Càteldor:

70 Pujjaló-Putxaló-Puixaló = Esquerra de Càteldor

65 Junts-Txunts-Ixunts = Dreta de Càteldor

Anex:

Impostos Socialistes.

Anex:

Es un delegat del govern de Càteldor de Putxaló,

el que gestiona els impostos a l'Aragó.

Es un delegat del govern de Càteldor de Puixaló,

el que gestiona els impostos en el País Valencià.


Decreto-Ley:

Congreso de los Diputados:

26 Bloque unionista.

180 escaños. 

25 Bloque separatista.

170 escaños.


Ley: [ de financiación solidaria ]

No te puedes embuchacar los impuestos,

y se pierde menos dinero,

financiando Aragón, Valencia y Baleares,

no emitiendo cheques del Tesoro Catalán

porque compran en Catalunya,

con el dinero Catalán.

Te puedes embuchacar los impuestos,

y se pierde más dinero,

no financiando Aragón, Valencia y Baleares,

emitiendo cheques del Tesoro Catalán

aunque quizás compran en Catalunya,

con el dinero Catalán.

Ley-Anexa:

Es legal:

Comprar en Catalunya con el dinero Catalán.

No es legal:

No comprar en Catalunya con el dinero Catalán.


Ley:

Llueve y no me mojo

porque llevo paraguas.

Llueve y me mojo

porque no llevo paraguas.

Si llueve entonces me mojo

aunque quizás llevo paraguas.

Si llueve entonces no me mojo

aunque quizás no llevo paraguas.

Ley-Anexa:

Es legal:

Solgar de casa lloviendo,

sin viento.

Es legal:

No solgar de casa lloviendo,

con viento.


Ley:

El semáforo está en rojo y te tienes que parar.

El semáforo está en amarillo o no te tienes que parar.

Deducción:

Si el semáforo está en amarillo entonces te tienes que parar.

Si el semáforo está en azul entonces no te tienes que parar.


Ley:

Es legal:

el porno de no espectro de alma,

en el control de menores,

porque no son,

y se pueden desear,

infieles del prójimo.

Es ilegal:

el porno de espectro de alma,

en el control de mayores,

porque son,

y no se pueden desear,

fieles del prójimo.


Ley:

( 1/( 1+(-1)·(1/c)^{2}·(1/2)·m_{ij}·R_{iju}^{u} ) )·...

m·( d[u]d[u]+(-1)·(1/2)·m_{ij}·R_{iju}^{u} ) = U( S(u) )·d[t]d[t]

( 1/( 1+(-1)·(1/c)^{2}·(1/2)·m_{ij}·R_{ijv}^{v} ) )·...

m·( d[v]d[v]+(-1)·(1/2)·m_{ij}·R_{ijv}^{v} ) = U( S(v) )·d[t]d[t]

Ley:

( 1/( 1+(-1)·(1/c)^{2}·(1/2)·m_{ij}·R_{iju}^{u} ) )·...

(m/2)·c·( d[u]d[u]+(-1)·(1/2)·m_{ij}·R_{iju}^{u} ) = s·U( S(u) )·d[t]d[t]

( 1/( 1+(-1)·(1/c)^{2}·(1/2)·m_{ij}·R_{ijv}^{v} ) )·...

(m/2)·c·( d[v]d[v]+(-1)·(1/2)·m_{ij}·R_{ijv}^{v} ) = s·U( S(v) )·d[t]d[t]


Ley:

Sea f(u) = he^{iau} ==> ( S(u) )^{2} = h^{2}·(1/2)·e^{2iau}

Sea f(v) = he^{iav} ==> ( S(v) )^{2} = h^{2}·(1/2)·e^{2iav}

Ley:

(m/2)·d_{t}[u(t)]^{2} = (pq)·k·(1/r)^{3}·(1/4)·h^{2}·e^{2i·au}

u(t) = (-1)·(1/i)·(1/a)·ln( ( (1/m)·(-1)·(pq)·k·(1/r)^{3}·h^{2}·(1/2) )^{(1/2)}·at )

(m/2)·d_{t}[v(t)]^{2} = (-1)·(pq)·k·(1/r)^{3}·(1/4)·h^{2}·e^{2i·av}

v(t) = (-1)·(1/i)·(1/a)·ln( ( (1/m)·(pq)·k·(1/r)^{3}·h^{2}·(1/2) )^{(1/2)}·at )

Ley:

(m/4)·c·d_{t}[u(t)]^{2} = s·(pq)·k·(1/r)^{3}·(1/4)·h^{2}·e^{2i·au}

u(t) = (-1)·(1/i)·(1/a)·ln( ( (s/c)·(1/m)·(-1)·(pq)·k·(1/r)^{3}·h^{2} )^{(1/2)}·at )

(m/4)·c·d_{t}[v(t)]^{2} = (-1)·s·(pq)·k·(1/r)^{3}·(1/4)·h^{2}·e^{2i·av}

v(t) = (-1)·(1/i)·(1/a)·ln( ( (s/c)·(1/m)·(pq)·k·(1/r)^{3}·h^{2} )^{(1/2)}·at )


Principio:

H(u,v,t) = (-1)·(c/l)·V·t^{2}·qE_{g}·( he^{iau}+re^{iav} )

H(v,u,t) = (c/l)·wr·t^{2}·qE_{e}·( he^{iav}+re^{iau} )

Principio:

(c/l)·V·t·d[t] = 2·d[u]

(c/l)·wr·t·d[t] = 2·d[u]

Ley:

d[x]d[u] = d[ (c/l)·V·t^{2} ]d[u] = (c/l)·V·2t·d[t]d[u] = 4·d[u]d[u]

d[x]d[u] = d[ (c/l)·wr·t^{2} ]d[u] = (c/l)·wr·2t·d[t]d[u] = 4·d[u]d[u]

Ley:

U(u) = d_{2u}[ H(u,v,t) ] = (-1)·(c/l)·V·t^{2}·qE_{g}·(1/2)·iah·e^{iau}

U(v) = d_{2v}[ H(v,u,t) ] = (c/l)·wr·t^{2}·qE_{e}·(1/2)·iah·e^{iav}

Ley:

F(u) = d_{2u}[ U(u) ] = (c/l)·V·t^{2}·qE_{g}·(1/4)·a^{2}·h·e^{iau}

F(v) = d_{2v}[ U(v) ] = (-1)·(c/l)·wr·t^{2}·qE_{e}·(1/4)·a^{2}·h·e^{iav}

Ley:

(m/2)·d_{t}[u(t)]^{2} = (-1)·(c/l)·V·t^{2}·qE_{g}·(1/2)·iah·e^{i·au}

u(t) = (-1)·4·(1/i)·(1/a)·ln( ( (1/m)·(c/l)·V·qE_{g}·hia^{3}·(1/16) )^{(1/4)}·t )

(m/2)·d_{t}[v(t)]^{2} = (c/l)·wr·t^{2}·qE_{e}·(1/2)·iah·e^{i·av}

v(t) = (-1)·4·(1/i)·(1/a)·ln( ( (1/m)·(c/l)·wr·(-1)·qE_{e}·hia^{3}·(1/16) )^{(1/4)}·t )


Principio:

H(u,v,t,s) = (-1)·s·(c/l)·V·t^{2}·qE_{g}·( he^{iau}+re^{iav} )

H(v,u,t,s) = s·(c/l)·wr·t^{2}·qE_{e}·( he^{iav}+re^{iau} )

Principio:

(c/l)·V·t·d[t] = 2·d[u]

(c/l)·wr·t·d[t] = 2·d[u]

Ley:

d[x]d[u] = d[ (c/l)·V·t^{2} ]d[u] = (c/l)·V·2t·d[t]d[u] = 4·d[u]d[u]

d[x]d[u] = d[ (c/l)·wr·t^{2} ]d[u] = (c/l)·wr·2t·d[t]d[u] = 4·d[u]d[u]

Ley:

U(u,s) = d_{2u}[ H(u,v,t,s) ] = (-1)·s·(c/l)·V·t^{2}·qE_{g}·(1/2)·iah·e^{iau}

U(v,s) = d_{2v}[ H(v,u,t,s) ] = s·(c/l)·wr·t^{2}·qE_{e}·(1/2)·iah·e^{iav}

Ley:

F(u,s) = d_{2u}[ U(u,s) ] = s·(c/l)·V·t^{2}·qE_{g}·(1/4)·a^{2}·h·e^{iau}

F(v,s) = d_{2v}[ U(v,s) ] = (-1)·s·(c/l)·wr·t^{2}·qE_{e}·(1/4)·a^{2}·h·e^{iav}

Ley:

(m/4)·c·d_{t}[u(t)]^{2} = (-1)·s·(c/l)·V·t^{2}·qE_{g}·(1/2)·iah·e^{i·au}

u(t) = (-1)·4·(1/i)·(1/a)·ln( ( (s/c)·(1/m)·(c/l)·V·qE_{g}·hia^{3}·(1/8) )^{(1/4)}·t )

(m/4)·c·d_{t}[v(t)]^{2} = s·(c/l)·wr·t^{2}·qE_{e}·(1/2)·iah·e^{i·av}

v(t) = (-1)·4·(1/i)·(1/a)·ln( ( (s/c)·(1/m)·(c/l)·wr·(-1)·qE_{e}·hia^{3}·(1/8) )^{(1/4)}·t )


Principio:

H(u,v,t) = (-1)·(c/l)^{2}·V·t^{3}·qE_{g}·( he^{(1/2)·iau}+re^{(1/2)·iav} )

H(v,u,t) = (c/l)^{2}·wr·t^{3}·qE_{e}·( he^{(1/2)·iav}+re^{(1/2)·iau} )

Principio:

(c/l)^{2}·V·t^{2}·d[t] = (25/12)·d[u]

(c/l)^{2}·wr·t^{2}·d[t] = (25/12)·d[u]

Ley:

d[x]d[u] = d[ (c/l)^{2}·V·t^{3} ]d[u] = (c/l)^{2}·V·3t^{2}·d[t]d[u] = (25/4)·d[u]d[u]

d[x]d[u] = d[ (c/l)^{2}·wr·t^{3} ]d[u] = (c/l)^{2}·wr·3t^{2}·d[t]d[u] = (25/4)·d[u]d[u]

Ley:

U(u) = d_{(5/2)·u}[ H(u,v,t) ] = (-1)·(c/l)·V·t^{2}·qE_{g}·(1/5)·iah·e^{(1/2)·iau}

U(v) = d_{(5/2)·v}[ H(v,u,t) ] = (c/l)·wr·t^{2}·qE_{e}·(1/5)·iah·e^{(1/2)·iav}

Ley:

F(u) = d_{(5/2)·u}[ U(u) ] = (c/l)·V·t^{2}·qE_{g}·(1/25)·a^{2}·h·e^{(1/2)·iau}

F(v) = d_{(5/2)·v}[ U(v) ] = (-1)·(c/l)·wr·t^{2}·qE_{e}·(1/25)·a^{2}·h·e^{(1/2)·iav}

Ley:

(m/2)·d_{t}[u(t)]^{2} = (-1)·(c/l)^{2}·V·t^{3}·qE_{g}·(1/5)·iah·e^{(1/2)·i·au}

u(t) = (-1)·10·(1/i)·(1/a)·ln( ( (1/m)·(c/l)^{2}·V·qE_{g}·hia^{3}·(1/250) )^{(1/5)}·t )

(m/2)·d_{t}[v(t)]^{2} = (c/l)^{2}·wr·t^{3}·qE_{e}·(1/5)·iah·e^{(1/2)·i·av}

v(t) = (-1)·10·(1/i)·(1/a)·ln( ( (1/m)·(c/l)^{2}·wr·(-1)·qE_{e}·hia^{3}·(1/250) )^{(1/5)}·t )

Ley:

(m/4)·c·d_{t}[u(t)]^{2} = (-1)·s·(c/l)^{2}·V·t^{3}·qE_{g}·(1/5)·iah·e^{(1/2)·i·au}

u(t) = (-1)·10·(1/i)·(1/a)·ln( ( (s/c)·(1/m)·(c/l)^{2}·V·qE_{g}·hia^{3}·(1/125) )^{(1/5)}·t )

(m/4)·c·d_{t}[v(t)]^{2} = s·(c/l)^{2}·wr·t^{3}·qE_{e}·(1/5)·iah·e^{(1/2)·i·av}

v(t) = (-1)·10·(1/i)·(1/a)·ln( ( (s/c)·(1/m)·(c/l)^{2}·wr·(-1)·qE_{e}·hia^{3}·(1/125) )^{(1/5)}·t )


Experimento:

Con el triángulo funcionó con la electricidad,

porque solgó una cuerda eléctrica.

Con el hexágono no funcionó con la electricidad,

porque debe ser una cuerda gravitatoria,

Ley:

Debe ser cuerda eléctrica con polígono regular impar = 2n+1

Debe ser cuerda gravitatoria con polígono regular par = 2n+2

Ley: [ del DNA de la gente que es ]

( CH=CH-CH=CH-C=C )-O-( C=C-C=C-CH=CH )-( CH=C=CH )

( N=N-N=N-C=C )-O-( C=C-C=C-N=N )-( N=C=N )

Hexágono-Pentágono-Hexágono-Pentágono = 2 puertas de alma

[2·[A]·H_{2}]·[2·[B]·H_{2}]·[O_{2}]·[5e] = [16e]·[2·[A]-O-[B]]·[2·H{2}]

Ley: [ del DNA de la gente que no es ]

( CH=CH-CH=CH-C=C )-O-O-( C=C-C=C-CH=CH )-( CH=C=C=CH )

( N=N-N=N-C=C )-O-O-( C=C-C=C-N=N )-( N=C=C=N )

Hexágono-Hexágono-Hexágono-Hexágono = 0 puertas de alma

[2·[A]·H_{2}]·[2·[B]·H_{2}]·[2·O_{2}]·[5e] = [16e]·[2·[A]-O-O-[B]]·[2·H{2}]


Ley: [ de plasma celular ]

C=C=C=C=C=C=CH-CH <==> 1 Constructor

C=C=C=C=CH-CH_{2}-CH_{2}-CH <==> 1 Destructor

Ley: [ de infección de plasma celular ]

[Constructor]·[2·H_{2}] = [2e]·[Destructor]

Ley:

La fiebre química de calor,

es electricidad positiva en el plasma,

para la des-infección de las células.

La fiebre química de hielor,

es electricidad negativa en el plasma,

de la infección de las células.

Anexo:

La fiebre química es una entalpía,

que impide la reproducción de los virus y no es una guerra.

Anexo:

El paracetamol y el ibuprofeno son anticuerpos,

porque bajan la fiebre.


Ley: [ de retículos endoplasmáticos eléctricos ]

De Núcleo:

De protones:

TACCCCCATACCCCCCATACCCCCAT

SCAAAAACSCAAAAAACSCAAAAACS

De Plasma:

De electrones:

TACCCCCATACCCCATACCCCCAT

SCAAAAACSCAAAACSCAAAAACS

Ley:

En Núcleo tiene,

un campo eléctrico positivo

El Plasma tiene,

un campo eléctrico negativo.

Ley: [ del aparato reproductor del Golgi ]

De Núcleo:

TACCCCCAT

SCAAAAACS


Clásico:

Lluir [o] Lucir [o] Lutzire-dom

f(l,u,0) = g(0,u,c)

Creuar [o] Cruzar [o] Crutzare-dom

f(e,u,0) = g(0,u,z)

Llum [o] Luz [o] Lum

Crum [o] Cruz [o] Crum


Ley: [ de Trans-Warp potencia 2 ]

(c/l)^{2}·V·t^{3} = n·cT

V = (0.01) ( Metro / Segundo ) & T = ( 31,536,000 ) Segundo = 1 año

t = ( n·l^{2}·(1/V)·(T/c) )^{(1/3)}

n·l^{2}·(1/V)·(T/c) = ( n·10.512 ) ( Segundo )^{3}

Anexo:

Debe haber 4 híper-espacios y 4 potencias de velocidad,

porque las distancias no son tan grandes.

La velocidad máxima de la luz debe ser = c^{5}


Ley:

int[ pq·k·(1/r) ][ 2pi·r·au·(1+(-1)·au) ] = 2pi·(pq)·k·ln(r)·au·(1+(-1)·au)

int[ (-1)·pq·k·(1/r) ][ 2pi·r·av·(1+(-1)·av) ] = (-1)·2pi·(pq)·k·ln(r)·av·(1+(-1)·av)

Ley:

Si f(u) = h·au·(1+(-1)·au) ==> ( S(u) )^{2} = h^{2}·(1/24)·(1+(-2)·au)^{4}

Si f(u) = h·av·(1+(-1)·av) ==> ( S(v) )^{2} = h^{2}·(1/24)·(1+(-2)·av)^{4}

Ley:

(m/2)·d_{t}[u(t)]^{2} = (pq)·k·(1/r)^{3}·(1/48)·h^{2}·(2au)^{4·[1:(-1)]}

u(t) = ( ( (2/m)·(pq)·k·(1/r)^{3}·(1/48) )^{(1/2)}·(2a)^{2·[1:(-1)]}·ht )^{( (-1)/2·[1:(-1)]+(-1))}

(m/2)·d_{t}[v(t)]^{2} = (-1)·(pq)·k·(1/r)^{3}·(1/48)·h^{2}·(2av)^{4·[1:(-1)]}

v(t) = ( ( (2/m)·(pq)·k·(1/r)^{3}·(1/48) )^{(1/2)}·(2a)^{2·[1:(-1)]}·hit )^{( (-1)/2·[1:(-1)]+(-1))}


Examen de teoría de cuerdas:

Ley:

(m/2)·d_{t}[u(t)]^{2} = ...

... (-1)·mc^{2}·( 1/( 1+(-1)·( (d_{t}[w]·r)/c )^{2}  )^{(1/2)} )·(1/2)·iah·e^{(1/2)·iau}

u(t) = ?

(m/2)·d_{t}[v(t)]^{2} = ...

... mc^{2}·( 1/( 1+(-1)·( (d_{t}[w]·r)/c )^{2}  )^{(1/2)} )·(1/2)·iah·e^{(1/2)·iav}

v(t) = ?


Ley:

(m/2)·d_{t}[u(t)]^{2} = ...

... (-1)·mc^{2}·( 1/( 1+(-1)·( (d_{tt}^{2}[w]·rt)/c )^{2} )^{(1/2)} )·...

... (1/2)·iah·e^{(1/2)·( (-1)·(1/4)·[2:(-1)]+1 )·iau}

u(t) = (-1)·4·(1/i)·(1/a)·( 1/( (-1)·(1/4)·[2:(-1)]+1 ) )·...

... ln( (-1)·c·( (d_{tt}^{2}[w]·r)/c )^{(-1)·(1/4)·[2:(-1)]}·( iha·(1/16) )^{(1/2)}·at^{(-1)·(1/4)·[2]+1} )


Ley: [ de orientación vectorial en profundidad ]

Si ( Fr = qg·(d/2)·sin(s) & d[F]·r = mu^{2}·(1/d)·cos(s)·x^{2}·d[x] ) ==> ...

... tan(s) = (2/3)·(m/q)·(1/g)·du^{2}

Ley: [ de orientación vectorial en profundidad ]

Si ( p = Mv & d[p]·r = mu·(1/d)·x^{2}·d[x] ) ==> u = ( 3·(M/m)·vr·(1/d)^{2} )

No hay comentarios:

Publicar un comentario