Principio:
pr = m·[ d_{t}[w],g(x) ]
Fr = m·[ d_{tt}^{2}[w],g(x) ]
Ley:
pr = m·[ d_{t}[x],h(x) ]
Fr = m·[ d_{tt}^{2}[x],h(x) ]
Deducción:
g(x) = (1/r)·h(x)
Ley: [ de rotación de una barra ]
Si d[F]·r = m·d_{tt}^{2}[w]·sin(s)·x·d[x] ==> ...
... d_{tt}^{2}[w] = 2·(F/m)·r·(1/d)^{2}·( 1/sin(s) )
Anexo:
qg·(d/2)·sin(s)+(-1)·qg·(d/2)·sin(s) = 0
Ley: [ de rotación de un disco ]
Si d[F]d[r] = m·d_{tt}^{2}[w]·( 1/(2pi·r) )·pi·r^{2}·d[s]d[r] ==> ...
... d_{tt}^{2}[w] = (3/pi)·(F/m)·(1/r)
Anexo:
qgr+(-1)·qgr = 0
Ley: [ de rotación de una esfera ]
Si d[F]d[r] = m·d_{tt}^{2}[w]·( 1/(4pi·r^{2}) )·(4/3)·pi·r^{3}·d[2s]d[r] ==> ...
... d_{tt}^{2}[w] = (3/pi)·(F/m)·(1/r)
Anexo:
qgr+(-1)·qgr = 0
Ley:
Sea F(t) = F·ln(ut+1) ==>
Si d[F(t)]d[r] = m·d_{tt}^{2}[w]·( 1/( t+(1/u) ) )·r·d[t]d[r] ==> ...
... d_{tt}^{2}[w] = 2·(F/m)·(1/r)
Anexo:
qgr+(-1)·qgr = 0
Ley:
Sea F(t) = F·( 1/((-n)+1) )·( (ut)+1 )^{(-n)+1} [o(ut)o] (ut)^{n} ==>
Si d[F(t)]d[r] = m·d_{tt}^{2}[w]·( 1/( t+(1/u) ) )^{n}·r·d[t^{n}]d[r] ==> ...
... d_{tt}^{2}[w] = 2·(F/m)·(1/r)
Anexo:
qgr+(-1)·qgr = 0
Ley: [ de disparo a una barra ]
p(0) = M·ur es el momento del impacto.
Si ( p(t) = M·( r/(t+(1/u)) ) & d[p]·r = m·d_{t}[w]·x·d[x] ) ==> ...
... d_{t}[w] = 2·(M/m)·( 1/(t+(1/u)) )·(r/d)^{2}
... w(t) = 2·(M/m)·ln(ut+1)·(r/d)^{2}
Anexo:
qgt·(d/2)·sin(s)+(-1)·qgt·(d/2)·sin(s) = 0
Ley:
Sea ( d_{t}[p(t)] = F(x) & I_{z} = (m/n)·r ) ==>
Si ( p(t) = I_{z}·d_{t}[w]+Mv & F(x) = qg·(x/d) ) ==> ...
... d_{tt}^{2}[w] = ( 1/( (m/n)+M ) )·qg·(w/d)
... w(t) = e^{( ( 1/( (m/n)+M ) )·qg·(1/d) )^{(1/2)}·t}
Ley:
Sea ( F = I_{z}·d_{tt}^{2}[w] & I_{z} = (m/n)·r ) ==>
Si d[F] = qgk·(1/r)^{n+1}·x^{n}·d[x] ==> ...
... F = ( 1/(n+1) )·qgk
... d_{tt}^{2}[w] = ( n/(n+1) )·(q/m)·(g/r)·s
Definición:
( ax^{[n:v]} )·( by^{[m:u]} ) = a·(x^{n}+u) [·] b·(y^{m}+v)
Teorema:
x^{[n:v]}·x^{[m:u]} = x^{[n+m:uv]}
Demostración:
x^{[n:v]}·x^{[m:u]} = (x^{n}+u) [·] (x^{m}+v) = ( x^{n+m}+uv ) = x^{[n+m:uv]}
Teorema:
x^{[3:i]}·x^{[1:i]} = x^{[4:(-1)]}
Demostración:
x^{[3:i]}·x^{[1:i]} = (x^{3}+i) [·] (x+i) = ( x^{3+1}+i^{2} ) = x^{[4:(-1)]}
Teorema:
x^{[n:s]}·c^{[n:s]} = (xc)^{[n:s^{2}]}
Demostración:
x^{[n:s]}·c^{[n:s]} = (x^{n}+s) [·] (c^{n}+s) = ( (xc)^{n}+s^{2} ) = (xc)^{[n:s^{2}]}
Teorema:
( ax^{[n:v]} )·( bx^{[m:u]} ) = (ab)·x^{[n+m:uv]}
Demostración:
( ax^{[n:v]} )·( bx^{[m:u]} ) = a·(x^{n}+u) [·] b·(x^{m}+v) = (ax^{n}+au) [·] (bx^{m}+bv) = ...
... ( ab·x^{n+m}+ab·uv ) = (ab)·x^{[n+m:uv]}
Teorema:
( ax^{[n:s]} )·( bc^{[n:s]} ) = (ab)·(xc)^{[n:s^{2}]}
Demostración:
( ax^{[n:s]} )·( bc^{[n:s]} ) = a·(x^{n}+s) [·] b·(c^{n}+s) = (ax^{n}+as) [·] (bc^{n}+bs) = ...
... ( ab·(xc)^{n}+ab·s^{2} ) = (ab)·(xc)^{[n:s^{2}]}
Ley:
m·d_{tt}^{2}[x(t)] = F·( s^{2}+(ax)^{n} ) = F·a^{[n:s]}·x^{[n:s]}
x(t) = ( ( [n:s]+(-1) )·( ( 1/([n:s]+1) )·(1/2)·a^{[n:s]}·(F/m) )^{(1/2)}·t )^{( (-2)/( [n:s]+(-1) ) )}
Ley:
m·d_{tt}^{2}[x(t)] = F·( s^{2}+(-1)·(ax)^{n} ) = (-F)·a^{[n:si]}·x^{[n:si]}
x(t) = ( ( [n:si]+(-1) )·( ( 1/([n:si]+1) )·(1/2)·a^{[n:si]}·(F/m) )^{(1/2)}·it )^{( (-2)/( [n:si]+(-1) ) )}
Ley:
m·d_{tt}^{2}[x(t)] = F·( s^{2}+( (1/v)·d_{t}[x] )^{n} ) = F·(1/v)^{[n:s]}·d_{t}[x]^{[n:s]}
d_{t}[x(t)] = ( (-1)·( [n:s]+(-1) )·( (1/v)^{[n:s]}·(F/m) )·t )^{( (-1)/( [n:s]+(-1) ) )}
x(t) = ( ( [n:s]+(-2) )·( (1/v)^{[n:s]}·(F/m) ) )^{(-1)}·...
... ( (-1)·( [n:s]+(-1) )·( (1/v)^{[n:s]}·(F/m) )·t )^{( (-1)/( [n:s]+(-1) ) )+1}
Ley:
m·d_{tt}^{2}[x(t)] = F·( s^{2}+(-1)·( (1/v)·d_{t}[x] )^{n} ) = (-F)·(1/v)^{[n:si]}·d_{t}[x]^{[n:si]}
d_{t}[x(t)] = ( ( [n:si]+(-1) )·( (1/v)^{[n:si]}·(F/m) )·t )^{( (-1)/( [n:si]+(-1) ) )}
x(t) = ( (-1)·( [n:si]+(-2) )·( (1/v)^{[n:si]}·(F/m) ) )^{(-1)}·...
... ( ( [n:si]+(-1) )·( (1/v)^{[n:si]}·(F/m) )·t )^{( (-1)/( [n:si]+(-1) ) )+1}
Ley:
Los físicos saben lo que pasa con su doctorado en la universidad,
según la película La Teoría del Todo del Stephen Hawking:
"Poco desarrollo matemático y mucha literatura."
Los físicos sabe lo que pasa con el doctorado de Stroniken:
"Mucho desarrollo matemático y poca literatura."
Principio: [ de energía gris de curvatura ]
Energía gris de curvatura negativa:
[Eh][EE][ U(z) = E·h(az) ]
[Eh][EE][ U(x,y) = E·h(ax+by) ]
Energía gris de curvatura positiva:
[Eh][EE][ U(z) = (-E)·h(az) ]
[Eh][EE][ U(x,y) = (-E)·h(ax+by) ]
Principio: [ de energía interior de galaxia ]
U(z) = (pq)·k·(1/r)·(1/2)·(az)^{2+(-1)·[2:(-i)]}
U(x,y) = (pq)·k·(1/r)·(1/2)·(ax+ay)^{1+(-1)·[1:i]}
Principio: [ de energía exterior de galaxia ]
U(z) = (-1)·(pq)·k·(1/r)·(1/2)·(az)^{2+(-1)·[2:(-1)]}
U(x,y) = (-1)·(pq)·k·(1/r)·(1/2)·(ax+by)^{1+(-1)·[1:1]}
Ley: [ de espiral interior de galaxia ]
( 1/( 1+(-1)·(1/c)^{2}·(1/2)·m_{ij}·R_{ijz}^{z} ) )·...
... m·( d[z]d[z]+(-1)·(1/2)·m_{ij}·R_{ijz}^{z} ) = (pq)·k·(1/r)·(1/2)·(az)^{2+(-1)·[2:(-i)]}·d[t]d[t]
z(t) = (1/a)·e^{ ...
... ( (2^{(1/2)}·c)^{(-1)·[2:(-i)]}·(1/m)·(pq)·k·(1/r) )^{( 1/( 2+(-1)·[2:(-i)] ) )}·...
... (-1)^{( 1/( 2+(-1)·[2:(-i)] ) )}·at}
Parámetro espiral = a:
(-1)^{( 1/( 2+(-1)·[2:(-i)] ) )} = a
a^{2}·( 1/(a^{2}+(-i)) ) = (-1)
a = ( (1/2)·i )^{(1/2)}
Tiempo real = t
Anexo:
El tejido espacio-tiempo está bajado.
Ley: [ de toroide exterior de galaxia ]
( 1/( 1+(-1)·(1/c)^{2}·(1/2)·m_{ij}·R_{ijz}^{z} ) )·...
... m·( d[z]d[z]+(-1)·(1/2)·m_{ij}·R_{ijz}^{z} ) = (-1)·(pq)·k·(1/r)·(1/2)·(az)^{2+(-1)·[2:(-1)]}·d[t]d[t]
z(t) = (1/a)·e^{ ...
... ( (2^{(1/2)}·ci)^{(-1)·[2:(-1)]}·(1/m)·(pq)·k·(1/r) )^{( 1/( 2+(-1)·[2:(-1)] ) )}·...
... (-1)^{( 1/( 2+(-1)·[2:(-1)] ) )}·at}
Parámetro toroidal = a:
(-1)^{( 1/( 2+(-1)·[2:(-1)] ) )} = a
a^{2}·( 1/(a^{2}+(-1)) ) = (-1)
a = (1/2)^{(1/2)}
Tiempo imaginario = it
Anexo:
El tejido espacio-tiempo está pujado.
Ley: [ de interior de un cúmulo de estrellas la esfera ]
( 1/( 1+(-1)·(1/c)·(1/2)·( m_{k}·R_{xxk}^{x}+m_{k}·R_{yyk}^{y} ) ) )·...
... mc·( d[x]+d[y]+(-1)·(1/2)·( m_{k}·R_{xxk}^{x}+m_{k}·R_{yyk}^{y} ) ) ) = ...
... (pq)·k·(1/r)·(1/2)·( ax+ay )^{1+(-1)·[1:i]}·d[t]
x(t) = ...
... (1/a)·e^{( (2c)^{(-1)·[1:i]}·(1/(mc))·(pq)·k·(1/r)·(-1) )^{( 1/(1+(-1)·[1:i]) )}·at}+(-1)·(1/a)
y(t) = ...
... (1/a)·e^{( (2c)^{(-1)·[1:i]}·(1/(mc))·(pq)·k·(1/r)·(-1) )^{( 1/(1+(-1)·[1:i]) )}·at}+(1/a)
x(0) [·] y(0) = 0
Parámetro circular = a:
(-1)^{( 1/( 1+(-1)·[1:i] ) )} = a
a·( 1/(a+i) ) = (-1)
a = (1/2)·(-i)
Tiempo real = t
Ley: [ de exterior de un cúmulo de estrellas los anillos ]
( 1/( 1+(-1)·(1/c)·(1/2)·( m_{k}·R_{xxk}^{x}+m_{k}·R_{yyk}^{y} ) ) )·...
... mc·( d[x]+d[y]+(-1)·(1/2)·( m_{k}·R_{xxk}^{x}+m_{k}·R_{yyk}^{y} ) ) ) = ...
... (-1)·(pq)·k·(1/r)·(1/2)·( ax+by )^{1+(-1)·[1:1]}·d[t]
x(t) = ...
... (1/a)·e^{( ((-2)·c)^{(-1)·[1:1]}·(1/(mc))·(pq)·k·(1/r)·(-1) )^{( 1/(1+(-1)·[1:1]) )}·at}+(-1)·(1/a)
y(t) = ...
... (1/b)·e^{( ((-2)·c)^{(-1)·[1:1]}·(1/(mc))·(pq)·k·(1/r)·(-1) )^{( 1/(1+(-1)·[1:1]) )}·bt}+(1/b)
x(0) [·] y(0) = 0
Parámetro exponencial = a:
(-1)^{( 1/( 1+(-1)·[1:1] ) )} = a
a·( 1/(a+1) ) = (-1)
a = (1/2)·(-1)
Tiempo imaginario = it
Principio: [ de energía interior de un quásar ]
U(w) = (pq)·k·(1/r)·(1/2)·w^{2+(-1)·[2:(-i)]}
Principio: [ de energía interior de un quásar esférico ]
U(u,v) = (pq)·k·(1/r)·(1/2)·(u+v)^{1+(-1)·[1:i]}
Principio: [ de energía exterior de un quásar ]
U(w) = (-1)·(pq)·k·(1/r)·(1/2)·w^{2+(-1)·[2:(-1)]}
Principio: [ de energía exterior de un quásar esférico ]
U(u,v) = (-1)·(pq)·k·(1/r)·(1/2)·(u+v)^{1+(-1)·[1:1]}
Ley: [ de interior de un quásar ]
( 1/( 1+(-1)·(r/c)^{2}·(1/2)·m_{ij}·R_{ijw}^{w} ) )·...
... mr^{2}·( d[w]d[w]+(-1)·(1/2)·m_{ij}·R_{ijw}^{w} ) = ...
... (pq)·k·(1/r)·(1/2)·w^{2+(-1)·[2:(-i)]}·d[t]d[t]
w(t) = we^{ ...
... ( (2^{(1/2)}·(c/r))^{(-1)·[2:(-i)]}·(1/m)·(pq)·k·(1/r)^{3} )^{( 1/( 2+(-1)·[2:(-i)] ) )}·...
... (-1)^{( 1/( 2+(-1)·[2:(-i)] ) )}·t}
Tiempo real = t
Ley: [ de exterior de un quásar ]
( 1/( 1+(-1)·(r/c)^{2}·(1/2)·m_{ij}·R_{ijw}^{w} ) )·...
... mr^{2}·( d[w]d[w]+(-1)·(1/2)·m_{ij}·R_{ijw}^{w} ) = ...
... (-1)·(pq)·k·(1/r)·(1/2)·w^{2+(-1)·[2:(-1)]}·d[t]d[t]
w(t) = we^{ ...
... ( (2^{(1/2)}·(c/r)·i)^{(-1)·[2:(-1)]}·(1/m)·(pq)·k·(1/r)^{3} )^{( 1/( 2+(-1)·[2:(-1)] ) )}·...
... (-1)^{( 1/( 2+(-1)·[2:(-1)] ) )}·t}
Tiempo imaginario = it
Ley: [ de interior de un quásar esférico ]
( 1/( 1+(-1)·(r/c)·(1/2)·( m_{k}·R_{uuk}^{u}+m_{k}·R_{vvk}^{v} ) ) )·...
... mcr·( d[u]+d[v]+(-1)·(1/2)·( m_{k}·R_{uuk}^{u}+m_{k}·R_{vvk}^{v} ) ) ) = ...
... (pq)·k·(1/r)·(1/2)·( u+v )^{1+(-1)·[1:i]}·d[t]
u(t) = we^{( (2·(c/r))^{(-1)·[1:i]}·(1/(mc))·(pq)·k·(1/r)^{2}·(-1) )^{( 1/(1+(-1)·[1:i]) )}·t}+(-w)
v(t) = we^{( (2·(c/r))^{(-1)·[1:i]}·(1/(mc))·(pq)·k·(1/r)^{2}·(-1) )^{( 1/(1+(-1)·[1:i]) )}·t}+w
u(0) [·] v(0) = 0
Tiempo real = t
Ley: [ de exterior de un quásar esférico ]
( 1/( 1+(-1)·(r/c)·(1/2)·( m_{k}·R_{uuk}^{u}+m_{k}·R_{vvk}^{v} ) ) )·...
... mcr·( d[u]+d[v]+(-1)·(1/2)·( m_{k}·R_{uuk}^{u}+m_{k}·R_{vvk}^{v} ) ) ) = ...
... (-1)·(pq)·k·(1/r)·(1/2)·( u+v )^{1+(-1)·[1:1]}·d[t]
u(t) = ...
... ue^{( ((-2)·(c/r))^{(-1)·[1:1]}·(1/(mc))·(pq)·k·(1/r)^{2}·(-1) )^{( 1/(1+(-1)·[1:1]) )}·t}+...
... (-1)·(uv)^{(1/2)}
v(t) = ...
... ve^{( ((-2)·(c/r))^{(-1)·[1:1]}·(1/(mc))·(pq)·k·(1/r)^{2}·(-1) )^{( 1/(1+(-1)·[1:1]) )}·t}+...
... (uv)^{(1/2)}
u(0) [·] v(0) = 0
Tiempo imaginario = it
Principio: [ de estrella de neutrones ]
No hay protones:
Sin bosón W:
e^{W(p,e)+(-1)·Z(n,e)}
U(x,y) = ( (pq)·k·(1/r)+(-1)·(1/2)·mc^{2}·( 1/( 1+(-1)·((ur)/c) ) )·(ax+ay)^{[1:i]}
Principio: [ de estrella de protones ]
No hay neutrones:
Sin bosón Z:
e^{Z(n,e)+(-1)·W(p,e)}
U(x,y) = ( (-1)·(pq)·k·(1/r)+(1/2)·mc^{2}·( 1/( 1+(-1)·((ur)/c) ) )·(ax+ay)^{[1:1]}
Principio: [ de colapso gravitatorio en disco de agujero negro ]
Colapsan los neutrones,
curvando el espacio negativamente:
U(z) = ( (pq)·k·(1/r)+(-1)·mc^{2}·( 1/( 1+(-1)·((ur)/c)^{2} )^{(1/2)} ) )·(az)^{[1:i]}
Principio: [ de colapso eléctrico de súper-nova en disco de púlsar ]
Colapsan los protones,
curvando el espacio positivamente:
U(z) = ( (-1)·(pq)·k·(1/r)+mc^{2}·( 1/( 1+(-1)·((ur)/c)^{2} )^{(1/2)} ) )·(az)^{[1:1]}
Principio: [ de energía nuclear fuerte de estrella ]
De protones:
U(x,y) = (-1)·mc^{2}·( 1/( 1+(-1)·((ur)/c)^{2} )^{(1/2)} )·(ax+ay)^{[1:i]}
De neutrones:
U(x,y) = mc^{2}·( 1/( 1+(-1)·((ur)/c)^{2} )^{(1/2)} )·(ax+by)^{[1:1]}
Principio: [ de energía nuclear débil de planeta ]
De neutrones:
U(x,y) = (-1)·(1/2)·mc^{2}·( 1/( 1+(-1)·((ur)/c) ) )·(ax+ay)^{[1:i]}
De protones:
U(x,y) = (1/2)·mc^{2}·( 1/( 1+(-1)·((ur)/c) ) )·(ax+by)^{[1:1]}
Teorema:
{x} = {y} <==> }x{ = }y{
Demostración:
}x{ = }y{
[Az][ z€}x{ <==> z€}y{ ]
[Az][ z != x <==> z != y ]
[Az][ z = x <==> z = y ]
[Az][ z€{x} <==> z€{y} ]
{x} = {y}
Teorema:
x = y <==> {x} = {y}
Demostración:
[<==] Si ( {x} = {y} & x != y ) ==>
[Az][ z€{x} <==> z€{y} ]
[Az][ z = x <==> z = y ]
[Az][ ( z = x & x != y ) <==> z = y ]
[Az][ z != y <==> z = y ]
No hay comentarios:
Publicar un comentario