miércoles, 15 de mayo de 2024

física-mecánica-de-rotación y matemáticas-Potch-Hammer y astro-física y economía y relatividad-especial y teoría-de-cuerdas

Principio:

pr = m·[ d_{t}[w],g(x) ]

Fr = m·[ d_{tt}^{2}[w],g(x) ]

Ley:

pr = m·[ d_{t}[x],h(x) ]

Fr = m·[ d_{tt}^{2}[x],h(x) ]

Deducción:

g(x) = (1/r)·h(x)


Ley: [ de rotación de una barra ]

Si d[F]·r = m·d_{tt}^{2}[w]·sin(s)·x·d[x] ==> ...

... d_{tt}^{2}[w] = 2·(F/m)·r·(1/d)^{2}·( 1/sin(s) )

Anexo:

qg·(d/2)·sin(s)+(-1)·qg·(d/2)·sin(s) = 0


Ley: [ de rotación de un disco ]

Si d[F]d[r] = m·d_{tt}^{2}[w]·( 1/(2pi·r) )·pi·r^{2}·d[s]d[r] ==> ...

... d_{tt}^{2}[w] = (3/pi)·(F/m)·(1/r)

Anexo:

qgr+(-1)·qgr = 0

Ley: [ de rotación de una esfera ]

Si d[F]d[r] = m·d_{tt}^{2}[w]·( 1/(4pi·r^{2}) )·(4/3)·pi·r^{3}·d[2s]d[r] ==> ...

... d_{tt}^{2}[w] = (3/pi)·(F/m)·(1/r)

Anexo:

qgr+(-1)·qgr = 0


Ley:

Sea F(t) = F·ln(ut+1) ==>

Si d[F(t)]d[r] = m·d_{tt}^{2}[w]·( 1/( t+(1/u) ) )·r·d[t]d[r] ==> ...

... d_{tt}^{2}[w] = 2·(F/m)·(1/r)

Anexo:

qgr+(-1)·qgr = 0

Ley:

Sea F(t) = F·( 1/((-n)+1) )·( (ut)+1 )^{(-n)+1} [o(ut)o] (ut)^{n} ==>

Si d[F(t)]d[r] = m·d_{tt}^{2}[w]·( 1/( t+(1/u) ) )^{n}·r·d[t^{n}]d[r] ==> ...

... d_{tt}^{2}[w] = 2·(F/m)·(1/r)

Anexo:

qgr+(-1)·qgr = 0


Ley: [ de disparo a una barra ]

p(0) = M·ur es el momento del impacto.

Si ( p(t) = M·( r/(t+(1/u)) ) & d[p]·r = m·d_{t}[w]·x·d[x] ) ==> ...

... d_{t}[w] = 2·(M/m)·( 1/(t+(1/u)) )·(r/d)^{2}

... w(t) = 2·(M/m)·ln(ut+1)·(r/d)^{2}

Anexo:

qgt·(d/2)·sin(s)+(-1)·qgt·(d/2)·sin(s) = 0

Ley:

Sea ( d_{t}[p(t)] = F(x) & I_{z} = (m/n)·r ) ==>

Si ( p(t) = I_{z}·d_{t}[w]+Mv & F(x) = qg·(x/d) ) ==> ...

... d_{tt}^{2}[w] = ( 1/( (m/n)+M ) )·qg·(w/d)

... w(t) = e^{( ( 1/( (m/n)+M ) )·qg·(1/d) )^{(1/2)}·t}

Ley:

Sea ( F = I_{z}·d_{tt}^{2}[w] & I_{z} = (m/n)·r ) ==> 

Si d[F] = qgk·(1/r)^{n+1}·x^{n}·d[x] ==> ...

... F = ( 1/(n+1) )·qgk

... d_{tt}^{2}[w] = ( n/(n+1) )·(q/m)·(g/r)·s


Definición:

( ax^{[n:v]} )·( by^{[m:u]} ) = a·(x^{n}+u) [·] b·(y^{m}+v)

Teorema:

x^{[n:v]}·x^{[m:u]} = x^{[n+m:uv]}

Demostración:

x^{[n:v]}·x^{[m:u]} = (x^{n}+u) [·] (x^{m}+v) = ( x^{n+m}+uv ) = x^{[n+m:uv]}

Teorema:

x^{[3:i]}·x^{[1:i]} = x^{[4:(-1)]}

Demostración:

x^{[3:i]}·x^{[1:i]} = (x^{3}+i) [·] (x+i) = ( x^{3+1}+i^{2} ) = x^{[4:(-1)]}

Teorema:

x^{[n:s]}·c^{[n:s]} = (xc)^{[n:s^{2}]}

Demostración:

x^{[n:s]}·c^{[n:s]} = (x^{n}+s) [·] (c^{n}+s) = ( (xc)^{n}+s^{2} ) = (xc)^{[n:s^{2}]}


Teorema:

( ax^{[n:v]} )·( bx^{[m:u]} ) = (ab)·x^{[n+m:uv]}

Demostración:

( ax^{[n:v]} )·( bx^{[m:u]} ) = a·(x^{n}+u) [·] b·(x^{m}+v) = (ax^{n}+au) [·] (bx^{m}+bv) = ...

... ( ab·x^{n+m}+ab·uv ) = (ab)·x^{[n+m:uv]}

Teorema:

( ax^{[n:s]} )·( bc^{[n:s]} ) = (ab)·(xc)^{[n:s^{2}]}

Demostración:

( ax^{[n:s]} )·( bc^{[n:s]} ) = a·(x^{n}+s) [·] b·(c^{n}+s) = (ax^{n}+as) [·] (bc^{n}+bs) = ...

... ( ab·(xc)^{n}+ab·s^{2} ) = (ab)·(xc)^{[n:s^{2}]}


Ley:

m·d_{tt}^{2}[x(t)] = F·( s^{2}+(ax)^{n} ) = F·a^{[n:s]}·x^{[n:s]}

x(t) = ( ( [n:s]+(-1) )·( ( 1/([n:s]+1) )·(1/2)·a^{[n:s]}·(F/m) )^{(1/2)}·t )^{( (-2)/( [n:s]+(-1) ) )}

Ley:

m·d_{tt}^{2}[x(t)] = F·( s^{2}+(-1)·(ax)^{n} ) = (-F)·a^{[n:si]}·x^{[n:si]}

x(t) = ( ( [n:si]+(-1) )·( ( 1/([n:si]+1) )·(1/2)·a^{[n:si]}·(F/m) )^{(1/2)}·it )^{( (-2)/( [n:si]+(-1) ) )}


Ley:

m·d_{tt}^{2}[x(t)] = F·( s^{2}+( (1/v)·d_{t}[x] )^{n} ) = F·(1/v)^{[n:s]}·d_{t}[x]^{[n:s]}

d_{t}[x(t)] = ( (-1)·( [n:s]+(-1) )·( (1/v)^{[n:s]}·(F/m) )·t )^{( (-1)/( [n:s]+(-1) ) )}

x(t) = ( ( [n:s]+(-2) )·( (1/v)^{[n:s]}·(F/m) ) )^{(-1)}·...

... ( (-1)·( [n:s]+(-1) )·( (1/v)^{[n:s]}·(F/m) )·t )^{( (-1)/( [n:s]+(-1) ) )+1}

Ley:

m·d_{tt}^{2}[x(t)] = F·( s^{2}+(-1)·( (1/v)·d_{t}[x] )^{n} ) = (-F)·(1/v)^{[n:si]}·d_{t}[x]^{[n:si]}

d_{t}[x(t)] = ( ( [n:si]+(-1) )·( (1/v)^{[n:si]}·(F/m) )·t )^{( (-1)/( [n:si]+(-1) ) )}

x(t) = ( (-1)·( [n:si]+(-2) )·( (1/v)^{[n:si]}·(F/m) ) )^{(-1)}·...

... ( ( [n:si]+(-1) )·( (1/v)^{[n:si]}·(F/m) )·t )^{( (-1)/( [n:si]+(-1) ) )+1}


Ley:

Los físicos saben lo que pasa con su doctorado en la universidad,

según la película La Teoría del Todo del Stephen Hawking:

"Poco desarrollo matemático y mucha literatura."

Los físicos sabe lo que pasa con el doctorado de Stroniken:

"Mucho desarrollo matemático y poca literatura."


Principio: [ de energía gris de curvatura ]

Energía gris de curvatura negativa:

[Eh][EE][ U(z) = E·h(az) ] 

[Eh][EE][ U(x,y) = E·h(ax+by) ]

Energía gris de curvatura positiva:

[Eh][EE][ U(z) = (-E)·h(az) ] 

[Eh][EE][ U(x,y) = (-E)·h(ax+by) ]


Principio: [ de energía interior de galaxia ]

U(z) = (pq)·k·(1/r)·(1/2)·(az)^{2+(-1)·[2:(-i)]}

U(x,y) = (pq)·k·(1/r)·(1/2)·(ax+ay)^{1+(-1)·[1:i]}

Principio: [ de energía exterior de galaxia ]

U(z) = (-1)·(pq)·k·(1/r)·(1/2)·(az)^{2+(-1)·[2:(-1)]}

U(x,y) = (-1)·(pq)·k·(1/r)·(1/2)·(ax+by)^{1+(-1)·[1:1]}


Ley: [ de espiral interior de galaxia ]

( 1/( 1+(-1)·(1/c)^{2}·(1/2)·m_{ij}·R_{ijz}^{z} ) )·...

... m·( d[z]d[z]+(-1)·(1/2)·m_{ij}·R_{ijz}^{z} ) = (pq)·k·(1/r)·(1/2)·(az)^{2+(-1)·[2:(-i)]}·d[t]d[t]

z(t) = (1/a)·e^{ ...

... ( (2^{(1/2)}·c)^{(-1)·[2:(-i)]}·(1/m)·(pq)·k·(1/r) )^{( 1/( 2+(-1)·[2:(-i)] ) )}·...

... (-1)^{( 1/( 2+(-1)·[2:(-i)] ) )}·at}

Parámetro espiral = a:

(-1)^{( 1/( 2+(-1)·[2:(-i)] ) )} = a

a^{2}·( 1/(a^{2}+(-i)) ) = (-1)

a = ( (1/2)·i )^{(1/2)}

Tiempo real = t

Anexo:

El tejido espacio-tiempo está bajado.

Ley: [ de toroide exterior de galaxia ]

( 1/( 1+(-1)·(1/c)^{2}·(1/2)·m_{ij}·R_{ijz}^{z} ) )·...

... m·( d[z]d[z]+(-1)·(1/2)·m_{ij}·R_{ijz}^{z} ) = (-1)·(pq)·k·(1/r)·(1/2)·(az)^{2+(-1)·[2:(-1)]}·d[t]d[t]

z(t) = (1/a)·e^{ ...

... ( (2^{(1/2)}·ci)^{(-1)·[2:(-1)]}·(1/m)·(pq)·k·(1/r) )^{( 1/( 2+(-1)·[2:(-1)] ) )}·...

... (-1)^{( 1/( 2+(-1)·[2:(-1)] ) )}·at}

Parámetro toroidal = a:

(-1)^{( 1/( 2+(-1)·[2:(-1)] ) )} = a

a^{2}·( 1/(a^{2}+(-1)) ) = (-1)

a = (1/2)^{(1/2)}

Tiempo imaginario = it

Anexo:

El tejido espacio-tiempo está pujado.


Ley: [ de interior de un cúmulo de estrellas la esfera ]

( 1/( 1+(-1)·(1/c)·(1/2)·( m_{k}·R_{xxk}^{x}+m_{k}·R_{yyk}^{y} ) ) )·...

... mc·( d[x]+d[y]+(-1)·(1/2)·( m_{k}·R_{xxk}^{x}+m_{k}·R_{yyk}^{y} ) ) ) = ...

... (pq)·k·(1/r)·(1/2)·( ax+ay )^{1+(-1)·[1:i]}·d[t]

x(t) = ...

... (1/a)·e^{( (2c)^{(-1)·[1:i]}·(1/(mc))·(pq)·k·(1/r)·(-1) )^{( 1/(1+(-1)·[1:i]) )}·at}+(-1)·(1/a)

y(t) = ...

... (1/a)·e^{( (2c)^{(-1)·[1:i]}·(1/(mc))·(pq)·k·(1/r)·(-1) )^{( 1/(1+(-1)·[1:i]) )}·at}+(1/a)

x(0) [·] y(0) = 0

Parámetro circular = a:

(-1)^{( 1/( 1+(-1)·[1:i] ) )} = a

a·( 1/(a+i) ) = (-1)

a = (1/2)·(-i)

Tiempo real = t

Ley: [ de exterior de un cúmulo de estrellas los anillos ]

( 1/( 1+(-1)·(1/c)·(1/2)·( m_{k}·R_{xxk}^{x}+m_{k}·R_{yyk}^{y} ) ) )·...

... mc·( d[x]+d[y]+(-1)·(1/2)·( m_{k}·R_{xxk}^{x}+m_{k}·R_{yyk}^{y} ) ) ) = ...

... (-1)·(pq)·k·(1/r)·(1/2)·( ax+by )^{1+(-1)·[1:1]}·d[t]

x(t) = ...

... (1/a)·e^{( ((-2)·c)^{(-1)·[1:1]}·(1/(mc))·(pq)·k·(1/r)·(-1) )^{( 1/(1+(-1)·[1:1]) )}·at}+(-1)·(1/a)

y(t) = ...

... (1/b)·e^{( ((-2)·c)^{(-1)·[1:1]}·(1/(mc))·(pq)·k·(1/r)·(-1) )^{( 1/(1+(-1)·[1:1]) )}·bt}+(1/b)

x(0) [·] y(0) = 0

Parámetro exponencial = a:

(-1)^{( 1/( 1+(-1)·[1:1] ) )} = a

a·( 1/(a+1) ) = (-1)

a = (1/2)·(-1)

Tiempo imaginario = it


Principio: [ de energía interior de un quásar ]

U(w) = (pq)·k·(1/r)·(1/2)·w^{2+(-1)·[2:(-i)]}

Principio: [ de energía interior de un quásar esférico ]

U(u,v) = (pq)·k·(1/r)·(1/2)·(u+v)^{1+(-1)·[1:i]}

Principio: [ de energía exterior de un quásar ]

U(w) = (-1)·(pq)·k·(1/r)·(1/2)·w^{2+(-1)·[2:(-1)]}

Principio: [ de energía exterior de un quásar esférico ]

U(u,v) = (-1)·(pq)·k·(1/r)·(1/2)·(u+v)^{1+(-1)·[1:1]}


Ley: [ de interior de un quásar ]

( 1/( 1+(-1)·(r/c)^{2}·(1/2)·m_{ij}·R_{ijw}^{w} ) )·...

... mr^{2}·( d[w]d[w]+(-1)·(1/2)·m_{ij}·R_{ijw}^{w} ) = ...

... (pq)·k·(1/r)·(1/2)·w^{2+(-1)·[2:(-i)]}·d[t]d[t]

w(t) = we^{ ...

... ( (2^{(1/2)}·(c/r))^{(-1)·[2:(-i)]}·(1/m)·(pq)·k·(1/r)^{3} )^{( 1/( 2+(-1)·[2:(-i)] ) )}·...

... (-1)^{( 1/( 2+(-1)·[2:(-i)] ) )}·t}

Tiempo real = t

Ley: [ de exterior de un quásar ]

( 1/( 1+(-1)·(r/c)^{2}·(1/2)·m_{ij}·R_{ijw}^{w} ) )·...

... mr^{2}·( d[w]d[w]+(-1)·(1/2)·m_{ij}·R_{ijw}^{w} ) = ...

... (-1)·(pq)·k·(1/r)·(1/2)·w^{2+(-1)·[2:(-1)]}·d[t]d[t]

w(t) = we^{ ...

... ( (2^{(1/2)}·(c/r)·i)^{(-1)·[2:(-1)]}·(1/m)·(pq)·k·(1/r)^{3} )^{( 1/( 2+(-1)·[2:(-1)] ) )}·...

... (-1)^{( 1/( 2+(-1)·[2:(-1)] ) )}·t}

Tiempo imaginario = it


Ley: [ de interior de un quásar esférico ]

( 1/( 1+(-1)·(r/c)·(1/2)·( m_{k}·R_{uuk}^{u}+m_{k}·R_{vvk}^{v} ) ) )·...

... mcr·( d[u]+d[v]+(-1)·(1/2)·( m_{k}·R_{uuk}^{u}+m_{k}·R_{vvk}^{v} ) ) ) = ...

... (pq)·k·(1/r)·(1/2)·( u+v )^{1+(-1)·[1:i]}·d[t]

u(t) = we^{( (2·(c/r))^{(-1)·[1:i]}·(1/(mc))·(pq)·k·(1/r)^{2}·(-1) )^{( 1/(1+(-1)·[1:i]) )}·t}+(-w)

v(t) = we^{( (2·(c/r))^{(-1)·[1:i]}·(1/(mc))·(pq)·k·(1/r)^{2}·(-1) )^{( 1/(1+(-1)·[1:i]) )}·t}+w

u(0) [·] v(0) = 0

Tiempo real = t

Ley: [ de exterior de un quásar esférico ]

( 1/( 1+(-1)·(r/c)·(1/2)·( m_{k}·R_{uuk}^{u}+m_{k}·R_{vvk}^{v} ) ) )·...

... mcr·( d[u]+d[v]+(-1)·(1/2)·( m_{k}·R_{uuk}^{u}+m_{k}·R_{vvk}^{v} ) ) ) = ...

... (-1)·(pq)·k·(1/r)·(1/2)·( u+v )^{1+(-1)·[1:1]}·d[t]

u(t) = ...

... ue^{( ((-2)·(c/r))^{(-1)·[1:1]}·(1/(mc))·(pq)·k·(1/r)^{2}·(-1) )^{( 1/(1+(-1)·[1:1]) )}·t}+...

... (-1)·(uv)^{(1/2)}

v(t) = ...

... ve^{( ((-2)·(c/r))^{(-1)·[1:1]}·(1/(mc))·(pq)·k·(1/r)^{2}·(-1) )^{( 1/(1+(-1)·[1:1]) )}·t}+...

... (uv)^{(1/2)}

u(0) [·] v(0) = 0

Tiempo imaginario = it


Principio: [ de estrella de neutrones ]

No hay protones:

Sin bosón W:

e^{W(p,e)+(-1)·Z(n,e)}

U(x,y) = ( (pq)·k·(1/r)+(-1)·(1/2)·mc^{2}·( 1/( 1+(-1)·((ur)/c) ) )·(ax+ay)^{[1:i]}

Principio: [ de estrella de protones ]

No hay neutrones:

Sin bosón Z:

e^{Z(n,e)+(-1)·W(p,e)}

U(x,y) = ( (-1)·(pq)·k·(1/r)+(1/2)·mc^{2}·( 1/( 1+(-1)·((ur)/c) ) )·(ax+ay)^{[1:1]}

Principio: [ de colapso gravitatorio en disco de agujero negro ]

Colapsan los neutrones,

curvando el espacio negativamente:

U(z) = ( (pq)·k·(1/r)+(-1)·mc^{2}·( 1/( 1+(-1)·((ur)/c)^{2} )^{(1/2)} ) )·(az)^{[1:i]}

Principio: [ de colapso eléctrico de súper-nova en disco de púlsar ]

Colapsan los protones,

curvando el espacio positivamente:

U(z) = ( (-1)·(pq)·k·(1/r)+mc^{2}·( 1/( 1+(-1)·((ur)/c)^{2} )^{(1/2)} ) )·(az)^{[1:1]}


Principio: [ de energía nuclear fuerte de estrella ]

De protones:

U(x,y) = (-1)·mc^{2}·( 1/( 1+(-1)·((ur)/c)^{2} )^{(1/2)} )·(ax+ay)^{[1:i]}

De neutrones:

U(x,y) = mc^{2}·( 1/( 1+(-1)·((ur)/c)^{2} )^{(1/2)} )·(ax+by)^{[1:1]}

Principio: [ de energía nuclear débil de planeta ]

De neutrones:

U(x,y) = (-1)·(1/2)·mc^{2}·( 1/( 1+(-1)·((ur)/c) ) )·(ax+ay)^{[1:i]}

De protones:

U(x,y) = (1/2)·mc^{2}·( 1/( 1+(-1)·((ur)/c) ) )·(ax+by)^{[1:1]}


Teorema:

{x} = {y} <==> }x{ = }y{

Demostración:

}x{ = }y{

[Az][ z€}x{ <==> z€}y{ ]

[Az][ z != x <==> z != y ]

[Az][ z = x <==> z = y ]

[Az][ z€{x} <==> z€{y} ]

{x} = {y}

Teorema:

x = y <==> {x} = {y}

Demostración:

[==>] Si x = y ==>

Sea z€{x} ==>

z = x

z = x & x = y

z = y

z€{y}

{x} [<< {y}

[<==] Si ( {x} = {y} & x != y ) ==>

[Az][ z€{x} <==> z€{y} ]

[Az][ z = x <==> z = y ]

[Az][ ( z = x & x != y ) <==> z = y ]

[Az][ z != y <==> z = y ]

x = y



Lema:

d_{x}[y(x)]+(-s)·ln(n)·y(x) = 0

y(x) = e^{s·ln(n)·x}

y(1) = n^{s}

d_{x}[y(x)]+(-1)·(1/s)·ln(n)·y(x) = 0

y(x) = e^{(1/s)·ln(n)·x}

y(1) = n^{(1/s)}

Disertación:

y(1) = 10€ & ( n = (0.10)€ & s = 3 )

y(1) = 100€ & ( n = (1.00)€ & s = 2 )

y(1) = 100€ & ( n = (10,000)€ & (1/s) = (1/2) )

y(1) = 10€ & ( n = (1,000)€ & (1/s) = (1/3) )

Anexo:

( s = 2 || s = (1/2) ) <==> superficie descubierta vacía o llena.

( s = 3 || s = (1/3) ) <==> volumen cubierto vacío o lleno.

1 socio = socio + impuestos = n+n

Alquileres por persona = 500€ al mes

Terreno cultivado = 5,000€ al mes.



Principio: [ de la teoría del Todo ]

Sea A el universo ==>

[EB][Ef][ B € P(A) & B = { < x,y,z,t,xi,yi,zi,ti,u,v,n > : f(x,y,z,t,xi,yi,zi,ti,u,v,n) } ]



Ley:

Como no te vas a creer que es Dios el que dice,

que un hombre sabe honrando al hijo,

cuando te vacunan des-honrando al padre.

Como te vas a creer que es Dios el que dice,

que un hombre no sabe des-honrando a la hija,

mientras no te pijas encima honrando a la madre.



Ley:

1 = (d_{t}[x]+v)·A(x,X) <==> A(x,X) = ( d_{t}[x]/( (d_{t}[x]+v)·(d_{T}[X]+(-v)) ) )

1 = (d_{T}[X]+(-v))·A(X,x) <==> A(X,x) = ( d_{T}[X]/( (d_{T}[X]+(-v))·(d_{t}[x]+v) ) )

Ley:

Sea ( v = 0 <==> La Luz es invariante Lorentz ) ==>

A(c,c) = (1/c)·( 1/( 1+(-1)·(v/c)^{2} ) )

<==> 

1 = ( c+v )·A(c,c)

1 = ( c+(-1)·v )·A(c,c)

Ley:

1 = (t+(v/c)·(1/u))·B(t,T) <==> B(t,T) = ( t/( (t+(v/c)·(1/u))·(T+(-1)·(v/c)·(1/u)) ) )

1 = (T+(-1)·(v/c)·(1/u))·B(T,t) <==> B(T,t) = ( T/( (T+(-1)·(v/c)·(1/u))·(t+(v/c)·(1/u)) ) )

Ley:

(1/T) = ( 1/( t+(r/c)·d_{t}[w]·(1/u) ) )

(1/t) = ( 1/( T+(-1)·(r/c)·d_{t}[w]·(1/u) ) )

Anexo:

No se expande el universo:

"Poco desarrollo matemático."

Anexo:

Las galaxias están girando,

y la frecuencia de absorción está desplazada hacia el rojo.

Los quásares están girando muy rápido,

y la frecuencia de absorción está muy desplazada hacia el rojo.

Ley:

d[T] = d[t+(v/c)·(1/u)] = d[t]+d[(v/c)·(1/u)] = d[t]+0 = d[t]

d[t] = d[T+(-1)·(v/c)·(1/u)] = d[T]+d[(-1)·(v/c)·(1/u)] = d[T]+0 = d[T]

Ley:

Sea ( v = 0 <==> La Luz es invariante Lorentz ) ==>

B(t,t) = ( t/( t^{2}+(-1)·(v/c)^{2}·(1/u)^{2} ) ) 

<==>

1 = ( t+(v/c)·(1/u) )·B(t,t)

1 = ( t+(-1)·(v/c)·(1/u) )·B(t,t)

Ley:

Sea ( x(t) = wt & X(T) = ruT ) ==> ...

... w+v = ru

... ru+(-v) = w

... T = ( 1/(w+v) )·X(T)

... t = ( 1/(ru+(-v)) )·x(t)

Ley:

Sea ( x(t) = a·(1/2)·t^{2} & X(T) = rb·(1/2)·T^{2} ) ==> ...

... at+v = rbT

... rbT+(-v) = at

... T = (1/a)·ln( (1/c)·at+(v/c) ) [o(T)o] X(T)

... t = (1/rb)·ln( (1/c)·rbT+(-1)·(v/c) ) [o(t)o] x(t)

Ley:

Sea ( x(t) = re^{ut} & X(T) = re^{(-1)·uT} ) ==> ...

... rue^{ut}+v = (-1)·rue^{(-1)·uT}

... (-1)·rue^{(-1)·uT}+(-v) = rue^{ut}

... T = ( t /o(t)o/ ( re^{ut}+vt ) ) [o(T)o] X(T)

... t = ( T /o(T)o/ ( re^{(-1)·uT}+(-1)·vT ) ) [o(t)o] x(t)

Ley:

Sea ( x(t) = r·(ut)^{p+1}·er-h[p+1](ut) & X(T) = r·(uT)^{q+1}·er-h[q+1](uT) ) ==> ...

... ru·(ut)^{p}·e^{ut}+v = ru·(uT)^{q}·e^{uT}

... ru·(uT)^{q}·e^{uT}+(-v) = ru·(ut)^{p}·e^{ut}

... T = ( t /o(t)o/ ( r·(ut)^{p+1}·er-h[p+1](ut)+vt ) ) [o(T)o] X(T)

... t = ( T /o(T)o/ ( r·(uT)^{q+1}·er-h[q+1](uT)+(-1)·vT ) ) [o(t)o] x(t)



Ley: [ de Einstein ]

Choque elástico de dos partículas:

( ct = ct+(-1)·vt )·A(v) & ct = ( ct+vt )·A(v)

A(v) = ( 1/( 1+(-1)·(v/c)^{2} )^{(1/2)} )

p(v) = m·( v·A(v) )

Energía relativista de dos partículas: 

mc^{2} = (m/2)·c^{2}+(m/2)·c^{2}

E(v)+mc^{2} = mc^{2}·A(v)



Ley: [ de Einstein ]

Choque elástico de una partícula contra alguna cosa que no se mueve:

ct = ( ct+(-1)·vt )·B(v) & ct = ( ct+0·t )·B(0)

B(v) = ( 1/( 1+(-1)·(v/c) ) )

E(v) = (m/2)·c·( v·B(v) )

Energía relativista de una partícula:

(m/2)·c^{2}

E(v)+(m/2)·c^{2} = (m/2)·c^{2}·B(v)



Ley:

Sea v(t) = c·sin(ut) ==>

d_{t}[f(t)]^{(-1)} = mc^{2}·A(v)

f(t) = (1/m)·(1/c)^{2}·(1/u)·sin(ut)

Ley:

Sea v(t) = c·cos(ut) ==>

d_{t}[f(t)]^{(-1)} = (-1)·mc^{2}·A(v)

f(t) = (1/m)·(1/c)^{2}·(1/u)·cos(ut)

Ley:

Sea v(t) = c·cos(ut) ==>

( int[g(t)]d[t] )^{(-1)} = mc^{2}·A(v)

g(t) = (1/m)·(1/c)^{2}·u·cos(ut)

Ley:

Sea v(t) = c·sin(ut) ==>

( int[g(t)]d[t] )^{(-1)} = (-1)·mc^{2}·A(v)

g(t) = (1/m)·(1/c)^{2}·u·sin(ut)



Ley:

Sea v(t) = c·cos(2ut) ==>

(1/m)·d_{t}[h(t)]^{(-2)} = (m/2)·c^{2}·B(v)

h(t) = (1/m)·(2/c)·(1/u)·cos(ut)

Ley:

Sea v(t) = c·cos(2uit) ==>

(1/m)·d_{t}[h(t)]^{(-2)} = (-1)·(m/2)·c^{2}·B(v)

h(t) = (1/m)·(2/c)·(1/u)·cos(uit)

Ley:

Sea v(t) = (-c)·cos(2ut) ==>

(1/m)·d_{t}[h(t)]^{(-2)} = (m/2)·c^{2}·B(v)

h(t) = (1/m)·(2/c)·(1/u)·sin(ut)

Ley:

Sea v(t) = (-c)·cos(2uit) ==>

(1/m)·d_{t}[h(t)]^{(-2)} = (-1)·(m/2)·c^{2}·B(v)

h(t) = (1/m)·(2/c)·(1/u)·sin(uit)



Principio:

H(u) = F·( x+y+z )·he^{iau}

H(v) = (-F)·( x+y+z )·he^{iav}

Ley:

(m/2)·d_{t}[u]^{2} = F·( xi+yi+zi )·(1/2)·ah·e^{iau}

(m/2)·d_{t}[v]^{2} = (-F)·( xi+yi+zi )·(1/2)·ah·e^{iav}

<==>

(m/2)·d_{it}[u]^{2} = (-F)·( xi+yi+zi )·(1/2)·ah·e^{iau}

(m/2)·d_{it}[v]^{2} = F·( xi+yi+zi )·(1/2)·ah·e^{iav}

Ley:

(m/2)·d_{t}[u]^{2} = i·F·(F/(2m))·t^{2}·( cos(s)·cos(w)+sin(s)·cos(w)+sin(w) )·(1/2)·ah·e^{iau}

(m/2)·d_{t}[v]^{2} = (-i)·F·(F/(2m))·t^{2}·( cos(s)·cos(w)+sin(s)·cos(w)+sin(w) )·(1/2)·ah·e^{iav}

<==>

(m/2)·d_{it}[u]^{2} = (-i)·F·(F/(2m))·t^{2}·( cos(s)·cos(w)+sin(s)·cos(w)+sin(w) )·(1/2)·ah·e^{iau}

(m/2)·d_{it}[v]^{2} = i·F·(F/(2m))·t^{2}·( cos(s)·cos(w)+sin(s)·cos(w)+sin(w) )·(1/2)·ah·e^{iav}

u(t) = (-1)·4·(1/i)·(1/a)·...

... ln( ( (1/i)·(1/2)·(F/m)^{2}·( cos(s)·cos(w)+sin(s)·cos(w)+sin(w) )·(1/16)·a^{3}·h )^{(1/4)}·t )

v(t) = (-1)·4·(1/i)·(1/a)·...

... ln( ( (-1)·(1/i)·(1/2)·(F/m)^{2}·( cos(s)·cos(w)+sin(s)·cos(w)+sin(w) )·(1/16)·a^{3}·h )^{(1/4)}·t )

No hay comentarios:

Publicar un comentario