Principi:
E_{e}(x,y,z) = qk_{e}·(1/r^{2})·( < x,y,z >/r )
E_{g}(x,y,z) = (-1)·qk_{g}·(1/r^{2})·( < x,y,z >/r )
Lley:
div[ E_{e}(x,y,z) ] = (-6)·qk_{e}·(1/r^{3})
div[ E_{g}(x,y,z) ] = 6·qk_{g}·(1/r^{3})
Deducció:
d_{x}[ E_{e}(x,y,z) ] = qk_{e}( (1/r^{3})+(-3)·( r^{2}/r^{5} ) )
d_{y}[ E_{e}(x,y,z) ] = qk_{e}( (1/r^{3})+(-3)·( r^{2}/r^{5} ) )
d_{z}[ E_{e}(x,y,z) ] = qk_{e}( (1/r^{3})+(-3)·( r^{2}/r^{5} ) )
Lley:
anti-potencial[ E_{e}(x,y,z) ] = ...
... qk_{e}·(1/20)·(
... (1/r^{6}) ...
... [o(x)o] ( x^{2} )^{[o(x)o](-1)} ) ...
... [o(y)o] ( y^{2} )^{[o(y)o](-1)} ) ...
... [o(z)o] ( z^{2} )^{[o(z)o](-1)} )
anti-potencial[ E_{g}(x,y,z) ] = ...
... (-1)·qk_{g}·(1/20)·(
... (1/r^{6}) ...
... [o(x)o] ( x^{2} )^{[o(x)o](-1)} ...
... [o(y)o] ( y^{2} )^{[o(y)o](-1)} ...
... [o(z)o] ( z^{2} )^{[o(z)o](-1)} )
Lley:
potencial[ E_{e}(x,y,z) ] = (-1)·qk_{e}·(1/r^{3})·( x^{2}+y^{2}+z^{2} )
potencial[ E_{g}(x,y,z) ] = qk_{g}·(1/r^{3})·( x^{2}+y^{2}+z^{2} )
Deducció:
d[x] = (r/x)·d[r]
d[y] = (r/y)·d[r]
d[z] = (r/z)·d[r]
Lley de Lagranià en angle constant:
(m/2)·d_{t}[r(t)]^{2} = (-1)·qpk_{e}·(1/r)
(m/2)·d_{t}[r(t)]^{2} = qpk_{g}·(1/r)
Lley:
x(t) = r(t)·cos(ut)·sin(vt)
y(t) = r(t)·sin(ut)·sin(vt)
z(t) = r(t)·cos(vt)
vt_{k} = 2pi <==> T = t_{k}
z(t) = r(t)
u = (1/t)
T = periode orbital de 0 a 2pi:
Si ( m·( d_{tt}^{2}[x]+d_{tt}^{2}[y]+d_{tt}^{2}[z] ) = 0 & d_{tt}^{2}[r(t)] = 0 ) ==> ...
... ( [1] & [2] )
[1] Lley de Gravetat:
... d_{t}[r(t)]·( 4 cos(1) )+(-1)·r(t)·( (2pi)/T ) = ( T/(2pi) )·( ((-q)pk_{e})/m )·(1/r^{2})
... d_{t}[r(t)]·( 4 cos(1) )+(-1)·r(t)·( (2pi)/T ) = ( T/(2pi) )·( (qpk_{g})/m )·(1/r^{2})
[2] Lley de Anti-Gravetat:
... (-1)·d_{t}[r(t)]·( 4 cos(1) )+r(t)·( (2pi)/T ) = ( T/(2pi) )·( (qpk_{e})/m )·(1/r^{2})
... (-1)·d_{t}[r(t)]·( 4 cos(1) )+r(t)·( (2pi)/T ) = ( T/(2pi) )·( ((-q)pk_{g})/m )·(1/r^{2})
No hay comentarios:
Publicar un comentario