Principi:
M = m_{1}( Tub )+m_{2}( Roda )
Tub-girant-y-Roda:
(1/2)·(m+M·(r/R))·d_{t}[x]^{2} = (-1)·qg·x
Tub-fix-y-roda:
(1/2)·(m+M·( (R+(-r))/R ))·d_{t}[y]^{2} = (-1)·qg·y
Lley:
d_{tt}^{2}[x] = (-1)·( (qg)/(m+M·(r/R)) )
d_{tt}^{2}[y] = (-1)·( (qg)/(m+M·( (R+(-r))/R )) )
Lley:
d_{t}[x] = (-1)·( (qg)/(m+M·(r/R)) )·t
d_{t}[y] = (-1)·( (qg)/(m+M·( (R+(-r))/R )) )·t
Lley:
x(t) = (-1)·( (qg)/(m+M·(r/R)) )·(1/2)·t^{2}
y(t) = (-1)·( (qg)/(m+M·( (R+(-r))/R )) )·(1/2)·t^{2}
Principi:
Pes-estirat-per-una-força:
m·d_{tt}^{2}[x] = (-1)·qg+F
Pes-penjat-de-una-molla:
m·d_{tt}^{2}[y] = (-1)·qg+(-k)·y
Pes-enfonsanse:
m·d_{tt}^{2}[z] = (-1)·qg+(-b)·d_{t}[z]
Lley:
x(t) = ( ((-1)·qg+F)/m )·(1/2)·t^{2}
y(t) = y_{k}·e^{i·(k/m)^{(1/2)}·t}+(-1)·(1/k)·qg·t
z(t) = e^{(-1)·(b/m)·t}·int[(-1)·qg·t·e^{(b/m)·t}]d[t]
No hay comentarios:
Publicar un comentario