sábado, 1 de enero de 2022

exponencials y acotacions

Lema:

kn^{k+(-1)} [< k^{n}

Demostració:

(n+(-1))^{k+(-1)} [< n^{k+(-1)} [< k^{n+(-1)}

Lema:

k^{n} [< (1/k)·n^{k+1}

Demostració

k^{n+1} [< n^{k+1} [< (n+1)^{k+1}


Teorema:

1+n^{k+(-1)} [< k^{n}

Demostració:

... 1+n^{k+(-1)} [< ...

... 1+( k+(-1) )·n^{k+(-1)} = 1+kn^{k+(-1)}+(-1)·n^{k+(-1)} [< ...

... kn^{k+(-1)} [< k^{n}

Teorema:

1+n^{k+1} >] k^{n}

Demostració:

... 1+n^{k+1} >] n^{k+1} >] (1/k)·n^{k+1} >] k^{n}


Teorema:

0 [< lim[ ( n^{k+(-1)}/k^{n} ) ] [< 1

Demostració:

0 [< ( n^{k+(-1)}/k^{n} ) [< ( n^{k+(-1)}/(1+n^{k+(-1)}) ) [< 1

Teorema:

0 [< lim[ ( k^{n}/n^{k+1} ) ] [< 1

Demostració:

0 [< ( k^{n}/n^{k+1} ) [< ( (1+n^{k+1})/n^{k+1} ) [< 1


( k^{oo}/k^{oo} ) = k^{oo+(-oo)} = k

( k/k )^{oo} = ( k^{0} )^{oo} = k^{0·oo} = k

( k/k )^{oo} = e^{ln( ( k/k )^{oo} )} = e^{ln( k^{0·oo} )} = e^{(0·oo)·ln(k)} = e^{ln(k)} = k


Teorema:

f(x) = x <==> ( f(x+y) = f(x)+f(y) & f(x·y) = f(x)·f(y) )

Demostració:

f(x) = f(x+0) = f(x)+f(0)

f(0) = 0

f(x) = f(x·1) = f(x)·f(1)

f(1) = 1

0 = f(0) = f(x+(-x)) = f(x)+f(-x)

f(-x) = (-1)·f(x)

1 = f(1) = f(x·(1/x)) = f(x)·f(1/x)

f(1/x) = ( 1/f(x) )


Teorema:

lim[ ( 2n+1 )/( 2^{n}+(-1) ) ] [< 2

Demostració:

lim[ ( ( 2n+1 )/( 2^{n}+(-1) ) ) ] [< ...

... lim[ ( ( 2n+1 )/( (1+n)+(-1) ) ) ] = lim[ ( ( 2n+1 )/n ) ] = 2


Teorema:

lim[ ( 3n^{2}+2n+1 )/( 3^{n}+2^{n}+1 ) ] [< 3

Demostració:

lim[ ( ( 3n^{2}+2n+1 )/( 3^{n}+2^{n}+1 ) ) ] [< ...

... lim[ ( ( 3n^{2}+2n+1 )/( (1+n^{2})+(1+n)+(-1) ) ) ] = 3


Lley:

Un coshinet de roda esta girant amb boles a dins:

(o)---o---(o)

Radi interior:

d_{t}[x(t)] = d_{t}[u(t)]·R_{1}

Radi exterior:

d_{t}[y(t)] = d_{t}[v(t)]·R_{2}

La velocitat de les boles és:

[E s(t) ][ d_{t}[z(t)] = (1/2)·( R_{1}+R_{2} )·d_{t}[s(t)] ]

La posició de les boles és:

[E s(t) ][ z(t) = (1/2)·( R_{1}+R_{2} )·s(t) ]

Deducció:

d_{t}[x(t)] = d_{t}[z(t)]+d_{t}[w(t)]·R_{0}

d_{t}[y(t)] = d_{t}[z(t)]+(-1)·d_{t}[w(t)]·R_{0}

Es defineish un < s: R ---> R & t --> s(t) > ==>

s(t) = ( ( u(t)·R_{1}+v(t)·R_{2} )/( R_{1}+R_{2} ) )

s(t)·( R_{1}+R_{2} ) = u(t)·R_{1}+v(t)·R_{2}

d_{t}[s(t)·( R_{1}+R_{2} ) ] = d_{t}[u(t)·R_{1}+v(t)·R_{2}]

d_{t}[s(t)·( R_{1}+R_{2} ) ] = d_{t}[u(t)·R_{1}]+d_{t}[v(t)·R_{2}]

( R_{1}+R_{2} )·d_{t}[s(t)] = d_{t}[u(t)]·R_{1}+d_{t}[v(t)]·R_{2}

( R_{1}+R_{2} )·d_{t}[s(t)] = d_{t}[x(t)]+d_{t}[y(t)]

(1/2)·( R_{1}+R_{2} )·d_{t}[s(t)] = (1/2)·( d_{t}[x(t)]+d_{t}[y(t)] )

(1/2)·( R_{1}+R_{2} )·d_{t}[s(t)] = d_{t}[z(t)]

int[ (1/2)·( R_{1}+R_{2} )·d_{t}[s(t)] ]d[t] = int[ d_{t}[z(t)] ]d[t] = z(t)

(1/2)·( R_{1}+R_{2} )·int[ d_{t}[s(t)] ]d[t] = z(t)

(1/2)·( R_{1}+R_{2} )·s(t) = z(t)


Lley:

Un con de altura = h:

gira sobre un disc a: d_{t}[u(t)].

rota sobre si mateish a: d_{t}[v(t)].

y l'angle entre la altura del con y el terra = a.

radi DA = h·tan(a).

radi DB = h·tan(a).

radi OD = h·cos(a)

Lley A:

d_{t}[x(t)] = h·( cos(a)·d_{t}[u(t)]+(-1)·tan(a)·d_{t}[v(t)] )

x(t) = h·( cos(a)·u(t)+(-1)·tan(a)·v(t) )

Coriolis:

cos(a)·d_{t}[u(t)] = tan(a)·d_{t}[v(t)] <==> d_{t}[s(t)] = (-0)

Lley B:

d_{t}[x(t)] = h·( cos(a)·d_{t}[u(t)]+tan(a)·d_{t}[v(t)] )

x(t) = h·( cos(a)·u(t)+tan(a)·v(t) )

Coriolis:

cos(a)·d_{t}[u(t)] = tan(a)·d_{t}[v(t)] <==> d_{t}[s(t)] = (-2)·tan(a)·d_{t}[v(t)]

Deducció:

h·d_{t}[s(t)] = (-h)·( cos(a)·d_{t}[u(t)]+(-1)·tan(a)·d_{t}[v(t)] )

d_{t}[s(t)] = (-0)

h·d_{t}[s(t)] = (-h)·( cos(a)·d_{t}[u(t)]+tan(a)·d_{t}[v(t)] )

d_{t}[s(t)] = (-2)·tan(a)·d_{t}[v(t)] en A

x(t) = int[ d_{t}[x(t)] ]d[t]

x(t) = int[ h·( cos(a)·d_{t}[u(t)]+(-1)·tan(a)·d_{t}[v(t)] ) ]d[t]

x(t) = h·int[ ( cos(a)·d_{t}[u(t)]+(-1)·tan(a)·d_{t}[v(t)] ) ]d[t]

x(t) = h·( int[ cos(a)·d_{t}[u(t)] ]d[t]+int[ (-1)·tan(a)·d_{t}[v(t)] ]d[t] )

x(t) = h·( cos(a)·int[ d_{t}[u(t)] ]d[t]+(-1)·tan(a)·int[ d_{t}[v(t)] ]d[t] )

x(t) = h·( cos(a)·u(t)+(-1)·tan(a)·v(t) )


Lley:

Un rectangle de área = L·y

se li aplica una força horitzontal = F

La tensió interna de un sub-rectangle x·y = A(x) sobre (L+(-x))·y = B(x) compleish:

T(x) = F·(x/L) <==> T(x) = F·( A(x)/(A(x)+B(x)) )

El potencial intern A(x) compleish:

A(x) = F·(x/2)·(x/L) <==> A(x) = F·(x/2)·( A(x)/(A(x)+B(x)) )

Deducció:

y = ( (A(x)+B(x))/L ) = ( A(x)/x )

(x/L) = ( A(x)/(A(x)+B(x)) )

A(x) = int[ T(x) ]d[x]

A(x) = int[ F·(x/L) ]d[x]

A(x) = (F/L)·int[ x ]d[x]

A(x) = (F/L)·(1/2)·x^{2}

A(x) = F·(x/2)·(x/L)


Lley:

Si d_{x}[q(x)] = Q·s ==> q(L) = Q·s·L

Si d_{x}[q(x)] = Q·s·2·(x/L) ==> q(L) = Q·s·L

Si d_{x}[q(x)] = Q·s·(1/e)·( 1+e^{(x/L)} ) ==> q(L) = Q·s·L

Si d_{x}[q(x)] = Q·s·(2/pi)·( 1+(-1)·(x/L)^{2} )^{(-1)·(1/2)} ==> q(L) = Q·s·L

Si d_{x}[q(x)] = Q·s·(4/pi)·( 1+(x/L)^{2} )^{(-1)} ==> q(L) = Q·s·L


Definició:

E_{e}(x,y,z) = qk·(1/r^{3})·< x,y,z > = qk·(1/r^{2})·( < x,y,z >/r )

E_{g}(x,y,z) = (-1)·qk·(1/r^{3})·< x,y,z > = (-1)·qk·(1/r^{2})·( < x,y,z >/r )

( < x,y,z >/r )o( < 1,0,0 >,< 0,1,0 >,< 0,0,1 > )o( < x,y,z >/r ) = 1

Lley:

div[ E_{e}(x,y,z) ] = 3qk·(1/r^{3})

anti-potencial[ E_{e}(x,y,z) ] = 3qk·(1/r^{3})·xyz

div[ E_{g}(x,y,z) ] = (-3)·qk·(1/r^{3})

anti-potencial[ E_{g}(x,y,z) ] = (-3)·qk·(1/r^{3})·xyz

Lley:

potencial[ E_{e}(x,y,z) ] = A_{e}(r) = (-1)·qk·(1/r)

potencial[ E_{g}(x,y,z) ] = A_{g}(r) = qk·(1/r)

Deducció:

potencial[ E_{e}(x,y,z) ] = ...

... ( int[ qk·(1/r^{3})·x ]d[x]+int[ qk·(1/r^{3})·y ]d[y]+int[ qk·(1/r^{3})·z ]d[z] ) = ...

... qk·( (-2)/r^{3} )·( (1/2)·x^{2}+(1/2)·y^{2}+(1/2)·z^{2} ) = ...

... (-1)·qk·(1/r^{3})·( x^{2}+y^{2}+z^{2} )

r^{2} = ( x^{2}+y^{2}+z^{2} ) = ...

... < x,y,z >o( < 1,0,0 >,< 0,1,0 >,< 0,0,1 > )o< x,y,z >


Lagranià eléctric:

(m/2)·d_{t}[r(t)]^{2} = (-1)·qpk·(1/r)

Lagranià graviatori:

(m/2)·d_{t}[r(t)]^{2} = qpk·(1/r)

Deducció:

2n+(-2) = (-n)

3n = 2

Solucions del camp eléctric:

r(t) = ( (3/2)·2^{(1/2)}·i·( (qpk)/m )^{(1/2)}·t )^{(2/3)}

x(t) = ( (3/2)·2^{(1/2)}·i·( (qpk)/m )^{(1/2)}·t )^{(2/3)}·cos(ut)·sin(vt)

y(t) = ( (3/2)·2^{(1/2)}·i·( (qpk)/m )^{(1/2)}·t )^{(2/3)}·sin(ut)·sin(vt)

z(t) = ( (3/2)·2^{(1/2)}·i·( (qpk)/m )^{(1/2)}·t )^{(2/3)}·cos(vt)

Solucions del camp gravitatori:

r(t) = ( (3/2)·2^{(1/2)}·( (qpk)/m )^{(1/2)}·t )^{(2/3)}

x(t) = ( (3/2)·2^{(1/2)}·( (qpk)/m )^{(1/2)}·t )^{(2/3)}·cos(ut)·sin(vt)

y(t) = ( (3/2)·2^{(1/2)}·( (qpk)/m )^{(1/2)}·t )^{(2/3)}·sin(ut)·sin(vt)

z(t) = ( (3/2)·2^{(1/2)}·( (qpk)/m )^{(1/2)}·t )^{(2/3)}·cos(vt)


Newtonià eléctric orbital:

m·d_{tt}^{2}[x(t)] = ...

... qpk·( x/r^{3} )+2·d_{t}[r(t)]·d_{t}[f(u,v)]+r(t)·d_{tt}^{2}[f(u,v)]

m·d_{tt}^{2}[y(t)] = ...

... qpk·( y/r^{3} )+2·d_{t}[r(t)]·d_{t}[g(u,v)]+r(t)·d_{tt}^{2}[g(u,v)]

m·d_{tt}^{2}[z(t)] = ...

... qpk·( z/r^{3} )+2·d_{t}[r(t)]·d_{t}[h(u,v)]+r(t)·d_{tt}^{2}[h(u,v)]

Deducció:

(2/3)+(-1)+(-1) = (-1)·(1/3)+(-1) = (-1)·(4/3)

(2/3)+(-2) = (-1)·(4/3)

d_{tt}^{2}[ f(t)·cos(ut)·sin(vt) ] = ...

... d_{t}[ d_{t}[f(t)]·cos(ut)·sin(vt)+f(x)·( (-u)·sin(ut)·sin(vt)+v·cos(ut)·cos(vt) ) ]

d_{tt}^{2}[ f(t)·sin(ut)·sin(vt) ] = ...

... d_{t}[ d_{t}[f(t)]·sin(ut)·sin(vt)+f(x)·( u·cos(ut)·sin(vt)+v·sin(ut)·cos(vt) ) ]


órbita elíptica gravitatoria:

z(t) = r

T = periode orbital de 0 a 2pi

vT = 2pi

u = (1/t)

ru·2v·( cos(ut)+(-1)·sin(ut) )+d_{t}[r]·2v·( cos(ut)+sin(ut) ) = ...

... rv^{2}+( ( (qpk)/m )·(1/r^{2}) )

... d_{t}[r]·( 4·cos(1) ) = ( r·( (2pi)/T )+( T/(2pi) )·( (qpk)/m )·(1/r^{2})


Anti-electricitat de elix positiva:

d_{t}[r]·( 4·cos(1) )+(-1)·( r·( (2pi)/T ) = ( T/(2pi) )·( (qpk_{g})/m )·(1/r^{2})

d_{t}[r]·( 4·cos(1) )+(-1)·( r·( (2pi)/T ) = (-1)·( T/(2pi) )·( (qpk_{e})/m )·(1/r^{2})

electró de gir positiu = eléctric.

protó = eléctric.

Anti-gravetat de elix negativa:

(-1)·d_{t}[r]·( 4·cos(1) )+( r·( (2pi)/T ) = ( T/(2pi) )·( ((-q)pk_{g})/m )·(1/r^{2})

(-1)·d_{t}[r]·( 4·cos(1) )+( r·( (2pi)/T ) = (-1)·( T/(2pi) )·( ((-q)pk_{e})/m )·(1/r^{2})

electró de gir negatiu = gravitatori.

neutró = gravitatori.


En física solo existen en el potencial:

int[ (1/r^{3})·x ]d[x] = ( (-2)/r^{3} )·int[ x ]d[x]

int[ (1/r^{4})·x ]d[x] = ( (-1)/r^{4} )·int[ x ]d[x]

A_{e}(r) = (-1)·qk·(1/r) || A_{e}(r) = (-1)·(1/2)·qk·(1/r^{2})

A_{g}(r) = qk·(1/r) || A_{g}(r) = (1/2)·qk·(1/r^{2})


Definició:

B_{e}(d_{t}[x]·t,d_{t}[y]·t,d_{t}[z]·t) = ...

... qk·(1/r^{3})·(3/2)·< d_{t}[x]·t,d_{t}[y]·t,d_{t}[z]·t >


Newtonià magnétic:

m·d_{tt}^{2}[x(t)] = p·B_{e}(d_{t}[x]·t,d_{t}[y]·t,d_{t}[z]·t)

x(t) = ( (3/2)·2^{(1/2)}·i·( (qpk)/m )^{(1/2)}·t )^{(2/3)}


Lley:

div[ B_{e}(d_{t}[x]·t,d_{t}[y]·t,d_{t}[z]·t) ] = 3·qk·(1/r^{3})

anti-potencial[ B_{e}(d_{t}[x]·t,d_{t}[y]·t,d_{t}[z]·t) ] = ...

... 3·(27/8)·qk·(1/r^{3})·(d_{t}[x]·t)·(d_{t}[y]·t)·(d_{t}[z]·t)


Newtonià electro-magnétic:

m·d_{tt}^{2}[x(t)] = p·( E_{e}(x,y,z)+B_{e}(d_{t}[x]·t,d_{t}[y]·t,d_{t}[z]·t) )

x(t) = ( 3·i·( (qpk)/m )^{(1/2)}·t )^{(2/3)}

No hay comentarios:

Publicar un comentario