c^{log_{c^{n}}(c)} = c^{(1/n)}
log_{c^{n}}(c) = log_{c}(c^{(1/n)}) = (1/n)
c = (c^{n})^{(1/n)}
n[+]m = ( (n+m)/(1+1) ) = ((n+m)/2)
n[+]0 = (n/2)
x^{n}[·]x^{m} = x^{((n+m)/2)}
x^{n}[·]1 = x^{(n/2)}
m[+]...(n)...[+]m = m·( 1[+]...(n)...[+]1 ) = m
x^{m}[·]...(n)...[·]x^{m} = x^{m·( 1[+]...(n)...[+]1 )} = x^{m}
a[·]b = x^{log_{x}(a)}[·]x^{log_{x}(b)} = x^{( (log_{x}(ab))/2 )} = (ab)^{(1/2)}
a[·]( p+q ) = x^{log_{x}(a)}[·]x^{log_{x}( p+q )} = ( ap+aq )^{(1/2)}
a[·]( p[+] q) = x^{log_{x}(a)}[·]x^{log_{x}( p[+]q )} = ( ap[+]aq )^{(1/2)}
( ca·x^{n} )^{(1/2)}+( cb·x^{m} )^{(1/2)} = c
(ca)[·]x^{n}+(cb)[·]x^{m} = c
x = c^{( 1/( ( ( log_{c}(a) )+n ) [[+]] ( ( log_{c}(b) )+m ) )}
c^{( ( 1+log_{c}(a) )[+]( n/( ( ( log_{c}(a) )+n ) [[+]] ( ( log_{c}(b) )+m ) ) ) ) )}
c^{( ( 1+log_{c}(b) )[+]( m/( ( ( log_{c}(a) )+n ) [[+]] ( ( log_{c}(b) )+m ) ) ) ) )}
( 2x^{3} )^{(1/2)}+( 4x^{2} )^{(1/2)} = 2
2[·]x^{3}+4[·]x^{2} = 2
x = 2^{( 1/( ( 4 ) [[+]] ( 4 ) ) )}
( 3x^{7} )^{(1/2)}+( 9x^{6} )^{(1/2)} = 3
3[·]x^{7}+9[·]x^{6} = 3
x = 3^{( 1/( ( 8 ) [[+]] ( 8 ) ) )}
No hay comentarios:
Publicar un comentario