jueves, 27 de mayo de 2021

ecuacions diferencials

d_{x}[ ln( plot[(-n)]-[o(x)o]-e(x) ) ] = ( plot[(-n)]-[o(x)o]-e(x) )^{(-n)}

d_{x}[ plot[(-n)]-[o(x)o]-e(x) ] = ( plot[(-n)]-[o(x)o]-e(x) )^{(-n)+1}


d_{x}[ ln( plot[n]-[o(x)o]-e(x) ) ] = ( plot[n]-[o(x)o]-e(x) )^{n}

d_{x}[ plot[n]-[o(x)o]-e(x) ] = ( plot[n]-[o(x)o]-e(x) )^{n+1}


d_{x}[ ln( plot[(-n)]-[o(x)o]-e(x) ) ] = ...

... ( plot[(-n)]-[o(x)o]-e(x) )^{(-1)}·d_{x}[ plot[(-n)]-[o(x)o]-e(x) ]

d_{x}[ ln( plot[n]-[o(x)o]-e(x) ) ] = ...

... ( plot[n]-[o(x)o]-e(x) )^{(-1)}·d_{x}[ plot[n]-[o(x)o]-e(x) ]


y(x) [o(x)o] ln( d_{x}[y(x)] ) = cx

plot[1]-[o(x)o]-ln( d_{x}[y(x)] ) = cx

y(x) = int[ plot[(-1)]-[o(x)o]-e(cx) ] d[x]

y(x) = (1/2)·cx^{2}

plot[(-1)]-[o(x)o]-e(x) = x


d_{x}[y(x)]^{n}·d_{xx}^{2}[y(x)] = d_{x}[y(x)]

( y(x) )^{[o(x)o]n} [o(x)o] ln( d_{x}[y(x)] ) = x

plot[n]-[o(x)o]-ln( d_{x}[y(x)] ) = x

y(x) = int[ plot[(-n)]-[o(x)o]-e(x) ] d[x]


d_{xx}^{2}[y(x)] = d_{x}[y(x)]^{n+1}

( y(x) )^{[o(x)o](-n)} [o(x)o] ln( d_{x}[y(x)] ) = x

plot[(-n)]-[o(x)o]-ln( d_{x}[y(x)] ) = x

y(x) = int[ plot[n]-[o(x)o]-e(x) ] d[x]


( y(x) )^{[o(x)o]n} [o(x)o] e^{d_{x}[y(x)]} = x

plov[n]-[o(x)o]-e( d_{x}[y(x)] ) = x

y(x) = int[ plov[(-n)]-[o(x)o]-ln(x) ] d[x]


d_{x}[ plov[(-n)]-[o(x)o]-ln(x) ] = ...

... ( plov[(-n)]-[o(x)o]-ln(x) )^{(-n)}·e^{(-1)·plov[(-n)]-[o(x)o]-ln(x)}

d_{x}[ e^{plov[(-n)]-[o(x)o]-ln(x)} ] = ( plov[(-n)]-[o(x)o]-ln(x) )^{(-n)}

No hay comentarios:

Publicar un comentario