[[k]]( f(x) )^{(1/k)} = f(x)
[[1]]( f(x) ) = f(x)
s·[[k]]( f(x) ) = [[k]]( s^{k}·f(x) )
[[k+1]]( f(x) ) = [[k]]( d_{x}[f(x)] )
d_{x}[ [[k+1]]( f(x) ) ] = [[k]]( d_{x}[f(x)] )
int[ [[k]]( d_{x}[f(x)] ) ] d[x] = [[k+1]]( f(x) )
(1/k!)·(m/c^{k+(-2)})·d_{t}[x(t)]^{k} = E_{n}+(a_{k}/k!)·( x(t) )^{k}
x(t) = [[(1/k)]]( e^{(a_{k}/m)·c^{k+(-2)}·t}+(-1)·(k!/a_{k})·E_{n} )
d_{t}[x(t)] = [[(1/k)+(-1)]]( (a_{k}/m)·c^{k+(-2)}e^{(a_{k}/m)·c^{k+(-2)}·t} )
[[1+(-k)]]( ( (a_{k}/m)·c^{k+(-2)} )^{k}e^{(a_{k}/m)·c^{k+(-2)}·t} ) = ...
... e^{(a_{k}/m)·c^{k+(-2)}·t}
(m/p!)·d_{t}[x(t)]^{p} = E_{n}+a_{q}·(1/q!)·( x(t) )^{q}
x(t) = [[(1/q)]]( e^{(a_{q}/m)·(p!/q!)·t}+(-1)·(q!/a_{q})·E_{n} )
d_{t}[x(t)] = [[(1/q)+(-1)]]( (a_{q}/m)·(p!/q!)·e^{(a_{q}/m)·(p!/q!)·t} )
[[(p/q)+(-p)]]( ( (a_{q}/m)·(p!/q!) )^{p}( (a_{q}/m)·(p!/q!) )^{1+(-1)·(p/q)}·...
... e^{(a_{q}/m)·(p!/q!)·t} ) = [[(0/0)+(-0)]]( e^{(a_{q}/m)·(p!/q!)·t} ) = ...
... [[(0/q)+(-0)]]( (a_{q}/m)·(p!/q!)·e^{(a_{q}/m)·(p!/q!)·t} ) = e^{(a_{q}/m)·(p!/q!)·t}
No hay comentarios:
Publicar un comentario