-kalitx
-jjeko
-jjeku
-dokitx
-dukitx
-itx [o] -itxins
-kali
-jjoika
-jjuika
-doki
-duki
-i [o] -ins
pantalones:
un pantalokitx curti-dokitx.
un pantalokitx llargui-dokitx.
libros de matemáticas:
funciokitx expansivi-dokitx.
funciokitx contractivi-dokitx.
hroñi qui hroñi, [ sea quien sea ]
sere-proika benvenuti-prom.
hroñi qui no hroñi, [ sea quien no sea ]
sere-proika malvenuti-prom.
Mi luze-jjoika del idiom-kali sere-proika,
para hroñi qui hroñi.
yo amare-proika,
a hroñi qui hroñi.
Mi luze-jjoika del idiom-kali no sere-proika,
para hroñi qui no hroñi.
yo odiare-proika,
a hroñi qui no hroñi.
Teorema:
Si [Ax][Am][ ( x >] 0 & m >] 1 ) ==> ...
... Si ( d_{x}[f(x)] = m & f(x) [< k ) ==> [x] [< k ].
Si [Ax][Am][ ( x >] 0 & m >] 1 ) ==> ...
... Si ( d_{x}[f(x)] = m & f(x) [< k ) ==> ]x[ [< k ].
Demostració:
[x] [< m·[x] [< mx = f(x) [< k
]x[ [< m·]x[ [< mx = f(x) [< k
Teorema:
Si [Ax][Am][ ( x >] 1 & m >] 1 ) ==> ...
... Si ( d_{x...x}^{n}[f(x)] = n!·m & f(x) [< k ) ==> [x] [< k ].
Si [Ax][Am][ ( x >] 1 & m >] 1 ) ==> ...
... Si ( d_{x...x}^{n}[f(x)] = n!·m & f(x) [< k ) ==> ]x[ [< k ].
Demostració:
[x] [< m·[x] [< mx [< mx^{n} = f(x) [< k
]x[ [< m·]x[ [< mx [< mx^{n} = f(x) [< k
cuanto tú fachere-po-mitxli ayuni-jjeko,
te perfumare-po-mitxli la boki-jjeko,
bebento-sam red-bull-kalitx.
cuanto tú pasare-po-mitxli hambri-jjeko,
no te perfumare-po-mitxli la boki-jjeko,
no bebento-sam red-bull-kalitx.
mecániki-jjeko cuántiki-dokitx de Gaugi-kalitx.
mecániki-jjeko cuántiki-dokitx de Des-Gaugi-kalitx.
Si [Am_{k}][ m_{k} = 1 & n = ( p_{1} )^{m_{1}}·...·( p_{n} )^{m_{n}} ] ==> ...
... h(n) = (-1)^{n}
Si [Em_{k}][ m_{k} >] 2 & n = ( p_{1} )^{m_{1}}·...·( p_{n} )^{m_{n}} ] ==> h(n) = 0
h(1) = 0
Teorema:
h(n)+h( 2·( n!/(n+(-2))! ) )+...+h( k·( n!/(n+(-k))! ) ) = h(n)
Demostració:
kj || kj+1 || ... || kj+(k+(-1))
H(n+m) = h(mcd{n,m})
Teorema:
H( 2^{n+1}+(-1) ) = 0
Demostració:
h( 2^{n}+(2^{n}+(-1)) ) = h(mcd{2^{n},2^{n}+(-1)}) = h(1) = 0
mcd{n,n+1} = mcd{n,1} = 1
Teorema:
Siguin p,q€N & mcd{p,q} = 1.
Si ( k€P & n = kp ) ==> H(n+kq) = (-1)
Si ( k€P & n = kp ) ==> [Am][ m >] 1 ==> H(k^{m}n+k^{m+1}q) = 0 ]
Demostració:
H(n+kq) = h(mcd{kp,kq}) = h(k·mcd{p,q}) = h(k) = (-1)
H(k^{m}n+k^{m+1}q) = h(mcd{k^{m+1}p,k^{m+1}q}) = ...
... h(k^{m+1}·mcd{p,q}) = h(k^{m+1}) = 0
No hay comentarios:
Publicar un comentario