lunes, 25 de octubre de 2021

para-constructores, Lagrange y lógica matemàtica

azúcares de nitrógeno:

-C=C=C-O-C=C=C-(NH)-

1 para-constructor

-C=C-O-C=C-(NH)-

1 para-destructor

-C=C=C-O-C=C=C-N-O-O-N-C=C=C-O-C=C=C-

2 para-constructores

-C=C-O-C=C-N-O-O-N-C=C-O-C=C-

2 para-destructores


Azúcares de octo-metal-5:

-C=C=C-O-C=C=C-(PH_{3})-

1 para-constructor

-C=C-O-C=C-(PH_{3})-

1 para-destructor

-C=C=C-O-C=C=C-(PH_{2})-O-O-(PH_{2})-C=C=C-O-C=C=C-

2 para-constructores

-C=C-O-C=C-(PH_{2})-O-O-(PH_{2})-C=C-O-C=C-

2 para-destructores


Azúcares de octo-metal-7:

-C=C=C-O-C=C=C-(SH_{5})-

1 para-constructor

-C=C-O-C=C-(SH_{5})-

1 para-destructor

-C=C=C-O-C=C=C-(SH_{4})-O-O-(SH_{4})-C=C=C-O-C=C=C-

2 para-constructores

-C=C-O-C=C-(SH_{4})-O-O-(SH_{4})-C=C-O-C=C-

2 para-destructores


Amar la vida en este mundo,

supera al no matarás.

Odiar la vida en este mundo,

supera al matarás.


Amar más al que no es que al que es,

supera al no matarás al que es.

Odiar más al que no es que al que es,

supera al matarás al que es. [ La clausula ]


F(x,y,z) = 2·( z+(-1)·(1/2)·z^{2} )+xy+(-h)·( px+qy+(-m) )

d_{x}[F(x,y,z)] = y+(-h)p

d_{y}[F(x,y,z)] = x+(-h)q

2yx = hm

x = 1 & y = 1 & z = 1

h = (2/m)

F(1,1,1) = 2

G(x,y,z) = 2·( z+(-1)·(1/2)·z^{2} )+xy+(-h)·( px+qy )

G(1,1,1) = 0


F(x,y,z) = (2n+(-4))·( z+(-1)·(1/2)·z^{2} )+x^{n+(-k)}+y^{k}+(-h)·( px+qy+(-m) )

d_{x}[F(x,y,z)] = (n+(-k))·x^{n+(-k)+(-1)}+(-h)p

d_{y}[F(x,y,z)] = ky^{k+(-1)}+(-h)q

(n+(-k))·x^{n+(-k)}+ky^{k} = hm

x = 1 & y = 1 & z = 1

h = (n/m)

F(1,1,1) = n

G(x,y,z) = (2n+(-4))·( z+(-1)·(1/2)·z^{2} )+x^{n+(-k)}+y^{k}+(-h)·( px+qy )

G(1,1,1) = 0


F(x,y,z) = (n+(-2))·( e^{z}+(-z) )+e^{(n+(-k))·x}+e^{k·y}+(-h)·( pe^{x}+qe^{y}+(-m) )

d_{x}[F(x,y,z)] = (n+(-k))·e^{(n+(-k))·x}+(-h)pe^{x}

d_{y}[F(x,y,z)] = ke^{k·y}+(-h)qe^{y}

(n+(-k))·e^{(n+(-k))·x}+ke^{k·y} = hm

x = 0 & y = 0 & z = 0

h = (n/m)

F(0,0,0) = n

G(x,y,z) = (n+(-2))·( e^{z}+(-z) )+e^{(n+(-k))·x}+e^{k·y}+(-h)·( pe^{x}+qe^{y} )

G(0,0,0) = 0


[f_{k}] |= [g_{k}] <==> [Av][ v( f_{k} ==> g_{k} ) = 1 ]

[f_{k}] =| [g_{k}] <==> [Av][ v( f_{k} <== g_{k} ) = 1 ]

[f_{k}] |=| [g_{k}] <==> [Av][ v( f_{k} <==> g_{k} ) = 1 ]


[f_{i},f_{j}] |=| [f_{j},f_{i}]

[¬f_{i},¬f_{j}] |=| [¬f_{j},¬f_{i}]

[Av][ v( ( f_{i} & f_{j} ) <==> ( f_{j} & f_{i} ) ) = 1 ]

[Av][ v( ( ¬f_{i} & ¬f_{j} ) <==> ( ¬f_{j} & ¬f_{i} ) ) = 1 ]

]f_{i},f_{j}[ |=| ]f_{j},f_{i}[

]¬f_{i},¬f_{j}[ |=| ]¬f_{j},¬f_{i}[

[Av][ v( ( ¬f_{i} || ¬f_{j} ) <==> ( ¬f_{j} || ¬f_{i} ) ) = 1 ]

[Av][ v( ( f_{i} || f_{j} ) <==> ( f_{j} || f_{i} ) ) = 1 ]


[f_{k},f_{k}] |=| [f_{k}]

]f_{k},f_{k}[ |=| ]f_{k}[


[f_{k}] |=| ]¬f_{k}[

]f_{k}[ |=| [¬f_{k}]


[f_{k},(f_{k} ==> g_{k})] |= [g_{k}] <==> ...

... [Av][ v( ( f_{k} & (f_{k} ==> g_{k}) ) ==> g_{k} ) = 1 ]

[f_{k}] =| [(f_{k} <== g_{k}),g_{k}] <==> ...

... [Av][ v( f_{k} <== ( (f_{k} <== g_{k}) & g_{k} ) ) = 1 ]


Si [Ef_{n}][ f_{0} & [f_{n+(-1)}] |= [f_{n}] ] ==> [f_{0}] |= [f_{n}]

Es defineish:

[f_{n}] |= [f_{n+1}]

[Av][ v( ( f_{0} ==> f_{n} ) & ( f_{n} ==> f_{n+1} ) ) ==> ( f_{0} ==> f_{n+1} ) ) = 1 ]

[Av][ v( f_{0} ==> f_{n+1} ) = 1 ]


Si [Ef_{n}][ f_{0} & [f_{n+(-1)}] |=| [f_{n}] ] ==> [f_{0}] |=| [f_{n}]

Es defineish:

[f_{n}] |=| [f_{n+1}]

[Av][ v( ( f_{0} <==> f_{n} ) & ( f_{n} <==> f_{n+1} ) ) ==> ...

... ( f_{0} <==> f_{n+1} ) ) = 1 ]

[Av][ v( f_{0} <==> f_{n+(-1)} ) = 1 ]


Si f_{k} [€] E ==> E |= [f_{k}]

E = [f_{k},g_{1},...(n)...,g_{n}]

[Av][ v( ( f_{k} & g_{1} & ...(n)... & g_{n} ) ==> f_{k} ) = 1 ]

Si ¬f_{k} [€] ¬E ==> ¬E =| [¬f_{k}]

¬E = ]f_{k},g_{1},...(n)...,g_{n}[

[Av][ v( ¬f_{k} ==> ( ¬f_{k} || ¬g_{1} || ...(n)... || ¬g_{n} ) ) = 1 ]


Si [f_{k}] |= [f_{k+1}] & [g_{k}] |= [g_{k+1}] ==> [f_{k},g_{k}] |= [f_{k+1},g_{k+1}]

Si ]f_{k+1}[ |= ]f_{k}[ & ]g_{k+1}[ |= ]g_{k}[ ==> ]f_{k+1},g_{k+1}[ |= ]f_{k},g_{k}[

[f_{k},g_{k}] |= ...

... [f_{k},(f_{k} ==> f_{k+1}),g_{k},(g_{k} ==> g_{k+1})] |= ...

... [f_{k+1},g_{k+1}]

[Av][ v( ( f_{k} & f_{k} |= f_{k+1} ) <==> f_{k} ) = 1 ]


Si [f_{0}] =| [f_{k}] & [f_{1},...(n)...,f_{n}] =| [f_{0}] ==> [f_{k}] |=| [f_{0}]

Si ]f_{0}[ |= ]f_{k}[ & ]f_{1},...(n)...,f_{n}[ |= ]f_{0}[ ==> ]f_{k}[ |=| ]f_{0}[

No hay comentarios:

Publicar un comentario