teorema:
max{n: f(n) = n+p } = max{n: f(n) = n }+p
min{n: f(n) = n+p } = min{n: f(n) = n }+p
teorema:
sup{n: f(n) = n+p } = sup{n: f(n) = n }+p
inf{n: f(n) = n+p } = inf{n: f(n) = n }+p
demostració per absurd:
max{n: f(n) = n+p } != max{n: f(n) = n }+p
n [< max{n: f(n) = n }
n+p [< max{n: f(n) = n }+p = a < max{n: f(n) = n+p }
n+p [< a < max{n: f(n) = n+p }
n+p [< max{n: f(n) = n+p } = b+p < max{n: f(n) = n }+p
n [< b < max{n: f(n) = n }
Dualogía paralela a una funció:
f(x+cos(s)·h)+f(x+(-1)·cos(s)·h) = F(x)
g(a)+y(a) = 0
( x+cos(s)·h )+( x+(-1)·cos(s)·h ) = 2x
g(0) = (cos(s)·h)
y(0) = (-1)·(cos(s)·h)
( x+cos(s)·h )^{2}+( x+(-1)·cos(s)·h )^{2} = 2·(x+i·cos(s)·h)·(x+(-i)·cos(s)·h)
g(i·cos(s)·h) = 2i·(cos(s)·h)
y(i·cos(s)·h) = (-2)·i·(cos(s)·h)
( x+cos(s)·h )^{3}+( x+(-1)·cos(s)·h )^{3} = 2·x·(x^{2}+3(cos(s)·h))
g(i·3^{(1/2)}·(cos(s)·h)^{(1/2)}) = (-8)·(cos(s)·h)^{3}
y(i·3^{(1/2)}·(cos(s)·h)^{(1/2)}) = 8·(cos(s)·h)^{3}
( x+cos(s)·h )^{4}+( x+(-1)·cos(s)·h )^{4} = ...
... 2·( ( x^{2}+(cos(s)·h)^{2} )^{2}+4x^{2}·(cos(s)h)^{2} )
x^{2}+2i·x·(cos(s)·h)+(cos(s)·h)^{2} = 0
x = ((-1)+2^{(1/2)})·i·(cos(s)·h)
( (-1)+2^{(1/2)} )^{4}·i^{4} = 1+(-4)·2^{(1/2)}+6·2+(-4)·2^{(3/2)}+4
6·( (-1)+2^{(1/2)} )^{2}·i^{2} = 6·( (-1)+2·2^{(1/2)}+(-2) )
g( ((-1)+2^{(1/2)})·i·(cos(s)·h) ) = ...
... ((-1)+2^{(1/2)})·i·(cos(s)·h)^{4}+(-1)·((-1)+2^{(1/2)})^{3}·i·(cos(s)·h)^{4}
y( ((-1)+2^{(1/2)})·i·(cos(s)·h) ) = ...
... (-1)·((-1)+2^{(1/2)})·i·(cos(s)·h)^{4}+((-1)+2^{(1/2)})^{3}·i·(cos(s)·h)^{4}
En símbol de polinómic potencial:
( x+cos(s)·h )^{7}+( x+(-1)·cos(s)·h )^{7} = ...
... 2·x·( x^{6}+21x^{4}(cos(s)·h)^{2}+35x^{2}(cos(s)·h)^{4}+7·(cos(s)·h)^{6} )
(-7)·( cos(s)·h )^{6} = ...
x^{4+[...( 21·(cos(s)·h)^{2} )...[2]...( 21·(cos(s)·h)^{2} )...]}+35x^{2}(cos(s)·h)^{4} = ...
x^{2+[...( 35·(cos(s)·h)^{4} )...[...
... 2+[...( 21·(cos(s)·h)^{2} )...[2]...( 21·(cos(s)·h)^{2} )...]...
... ]...( 35·(cos(s)h)^{4} )...]}
x = ( (-7)·(cos(s)·h)^{6} )^{( 1/( 2+[...( 35·(cos(s)·h)^{4} )...[...
... 2+[...( 21·(cos(s)·h)^{2} )...[2]...( 21·(cos(s)·h)^{2} )...]...
... ]...( 35·(cos(s)h)^{4} )...] ) )}
x^{7}+21x^{5}(cos(s)·h)^{2} = ...
... ( (-7)·(cos(s)·h)^{6} )^{( ...
... ( 5+[...( 21·(cos(s)·h)^{2} )...[2]...( 21·(cos(s)·h)^{2} )...] )/...
... ( 2+[...( 35·(cos(s)·h)^{4} )...[...
... 2+[...( 21·(cos(s)·h)^{2} )...[2]...( 21·(cos(s)·h)^{2} )...]...
... ]...( 35·(cos(s)h)^{4} )...] ) )}
x^{7}+21x^{5}(cos(s)·h)^{2}+35x^{3}(cos(s)·h)^{4} = ...
... ( (-7)·(cos(s)·h)^{6} )^{( ...
... ( 3+[...( 35·(cos(s)·h)^{4} )...[...
... 2+[...( 21·(cos(s)·h)^{2} )...[2]...( 21·(cos(s)·h)^{2} )...]...
...]...( 35·(cos(s)·h)^{4} )...] )/...
... ( 2+[...( 35·(cos(s)·h)^{4} )...[...
... 2+[...( 21·(cos(s)·h)^{2} )...[2]...( 21·(cos(s)·h)^{2} )...]...
... ]...( 35·(cos(s)h)^{4} )...] ) )} = ...
x^{7}+21x^{5}(cos(s)·h)^{2}+35x^{3}(cos(s)·h)^{4} = ...
... (-7)·(cos(s)·h)^{6}·( (-7)·(cos(s)·h)^{6} )^{( 1/( 2+[...( 35·(cos(s)·h)^{4} )...[...
... 2+[...( 21·(cos(s)·h)^{2} )...[2]...( 21·(cos(s)·h)^{2} )...]...
... ]...( 35·(cos(s)h)^{4} )...] ) )}
No hay comentarios:
Publicar un comentario