martes, 26 de octubre de 2021

limits

x^{n+1}+(-1) = (x+(-1))·(1+x+...(n)...+x^{n})

A(x) = ( (x^{(n+1)}+(-1))/(x+(-1)) )

A(1) = (n+1)

E(x) = ( ((n+1)·x^{n})/(x+(-1)) )+(-1)·( (x^{(n+1)}+(-1))/(x+(-1))^{2} )

E(1) = 0

A(x) = ( (x^{n+1}+(-1))/(x^{m}+(-1)) )

A(1) = ( (n+1)/m )

E(x) = ( ((n+1)·x^{n})/(x^{m}+(-1)) )+...

... (-1)·( (x^{(n+1)}+(-1))/(x^{m}+(-1))^{2} )·mx^{m+(-1)}

E(1) = 0


Tecnología industrial:

PV

kT

qA

qRI

hf

qgx

(1/2)·ax^{2}

(4/3)·Px^{3}

Px^{2}y

(2s)·x^{4}

s·x^{2}yz


(-1)·ln(1+(-x)) = x+...(n)...+(1/n)·x^{n}+...

(-1)·ln(1+x) = (-x)+...(n)...+(-1)^{n}·(1/n)·x^{n}+...

No hay comentarios:

Publicar un comentario