x^{n+1}+(-1) = (x+(-1))·(1+x+...(n)...+x^{n})
A(x) = ( (x^{(n+1)}+(-1))/(x+(-1)) )
A(1) = (n+1)
E(x) = ( ((n+1)·x^{n})/(x+(-1)) )+(-1)·( (x^{(n+1)}+(-1))/(x+(-1))^{2} )
E(1) = 0
A(x) = ( (x^{n+1}+(-1))/(x^{m}+(-1)) )
A(1) = ( (n+1)/m )
E(x) = ( ((n+1)·x^{n})/(x^{m}+(-1)) )+...
... (-1)·( (x^{(n+1)}+(-1))/(x^{m}+(-1))^{2} )·mx^{m+(-1)}
E(1) = 0
Tecnología industrial:
PV
kT
qA
qRI
hf
qgx
(1/2)·ax^{2}
(4/3)·Px^{3}
Px^{2}y
(2s)·x^{4}
s·x^{2}yz
(-1)·ln(1+(-x)) = x+...(n)...+(1/n)·x^{n}+...
(-1)·ln(1+x) = (-x)+...(n)...+(-1)^{n}·(1/n)·x^{n}+...
No hay comentarios:
Publicar un comentario