sacboir [o] kacboir
sé-pont [o] ké-pont
saps-pont [o] kaps-pont
sap-pont [o] kap-pont
sacboms [o] kacboms
sacboz [o] kacboz
sacben-puá [o] kacben-puá
bacboir [o] dacboir
bé-pont [o] dé-pont
baps-pont [o] daps-pont
bap-pont [o] dap-pont
bacboms [o] dacboms
bacboz [o] dacboz
bacben-puá [o] dacben-puá
Il sap-pont de-le-com vack ser bacboire-dom de la Font.
Ila sap-pont de-le-com vack ser bacboire-dom de la Font.
vuloir
ye vule ye-de-muá <==> vull-de-puá
tú vule tú-de-tuá <==> vols-de-puá
vule pont-de-suá <==> vol-de-puá
vuloms
vuloz
vulen-puá
fatzoir [o] detzir
ye fatze ye-de-muá [o] ye ditze ye-de-muá <==> fetx-kû [o] ditx-kû
tú fatze tú-de-tuá [o] tú ditze tú-de-tuá <==> fetx-kes [o] ditx-kes
fatze pont-de-suá [o] ditze pont-de-suá <==> fetx-ka [o] ditx-ka
fatzems [o] detzims <==> fem [o] diem
fatzez [o] detziz <==> feu [o] dieu
fatzen-puá [o] ditzen-puá <==> fetx-ken [o] ditx-ken
Il vule pont-de-suá fatzoire-dom un café avec ila-de-suá.
Ila vule pont-de-suá fatzoire-dom un café avec il-de-suá.
ye fatze ye-de-muá un café avec tú-de-tuá,
si tú vule tú-de-tuá.
tú fatze tú-de-tuá un café avec ye-de-muá,
si ye vule ye-de-muá.
vatxnar [o] datxnar
vaitx-pont [o] daitx-pont
vas-pont [o] das-pont
vack-pont [o] dack-pont
vatxnoms [o] datxnoms
vatxnoz [o] datxnoz
van-pont [o] dan-pont
tenoir [o] venir
ye tine ye-de-muá [o] ye vine ye-de-muá
tú tine tú-de-tuá [o] tú vine tú-de-tuá
tine pont-de-suá [o] vine pont-de-suá
tenems [o] venims
tenez [o] veniz
tenen-puá [o] venen-puá
nus venims de le nort y vatxnoms cap a le sur.
nus venims de le sur y vatxnoms cap a le nort.
d_{x}[y] = f(x)·(y/x)^{( n/(n+1) )}
y = xu^{n+1}
u+(n+1)·x·d_{x}[u] = f(x)
u = e^{(-1)·(1/(n+1))·ln(x)}·int[(1/(n+1))·(1/x)·f(x)·e^{(1/(n+1))·ln(x)}]d[x]
y = x·( e^{(-1)·(1/(n+1))·ln(x)}·int[(1/(n+1))·(1/x)·f(x)·e^{(1/(n+1))·ln(x)}]d[x] )^{(n+1)}
y = x·e^{(-1)·ln(x)}·( int[(1/(n+1))·(1/x)·f(x)·e^{(1/(n+1))·ln(x)}]d[x] )^{(n+1)}
Teorema de Pitágoras:
(a+b)^{2} = h^{2}+4·(1/2)·ab
[ah]+[hb] = [ab] = (pi/2)
[ah]+[hh]+[hb] = pi
[hh] = (pi/2)
Identitat Pitagórica:
a^{2}+b^{2} = h^{2}
(a^{2}/h^{2})+(b^{2}/h^{2}) = (h^{2}/h^{2})
(a/h)^{2}+(b/h)^{2} = (h^{2}/h^{2}) = 1
( cos(x) )^{2}+( sin(x) )^{2} = 1
Si lo mundo vos odia,
pensad que ya no conocen al que me envió,
porque no son de esta especie,
y miente su alma.
Si lo mundo no vos odia,
pensad que aun conocen al que me envió,
porque son de esta especie,
y no miente su alma.
Ye estare ye-de-muá fatzointu-dom un café avec tú-de-tuá
Tú estare tú-de-tuá fatzointu-dom un café avec ye-de-muá
Ye havere ye-de-muá fatzoitu-dom un café avec tú-de-tuá
Tú havere tú-de-tuá fatzoitu-dom un café avec ye-de-muá
Françé-de-le-Patuá-y-Occitán-de-le-Pamuá:
Tú vols-de-puá [ fatzoire-dom ]-[ fatzoir ] un café avec [ ye-de-muá ]-[ ye-de-mi ]
Ye vull-de-puá [ fatzoire-dom ]-[ fatzoir ] un café avec [ tú-de-tuá ]-[ tú-de-ti ]
ye tine ye-de-muá anai-dom-otza-duá,
perque fatze pont-de-suá otzaté.
ye tine ye-de-muá anai-dom-bero-duá,
perque fatze pont-de-suá beroté.
Métode:
y = xu^{n+1}
d_{x}[y] = f(x)·(y/x)^{( n/(n+1) )}+(y/x)
(n+1)·x·d_{x}[u] = f(x)
y(x) = x·( (1/(n+1))·int[f(x)]d[x] [o(x)o] ln(x) )^{(n+1)}
d_{x}[y] = f(x)·(y/x)^{( n/(n+1) )}
u+(n+1)·x·d_{x}[u] = f(x)
y(x) = x·e^{(-1)·ln(x)}·( int[(1/(n+1))·(1/x)·f(x)·e^{(1/(n+1))·ln(x)}]d[x] )^{(n+1)}
Teoría:
d_{x}[ sin-[f(x)]-d[n:1]( h(x) ) ] = ...
... ( ( sin-[f(x)]-d[n:1]( h(x) ) )·( cos-[f(x)]-d[n:1]( h(x) ) )+(-1)·f(x) )·d_{x}[h(x)]
( cos-[f(x)]-d[n:1]( h(x) ) )+( sin-[f(x)]-d[n:1]( h(x) ) )^{n} = 1
Métode:
y = xu^{n+1}
d_{x}[y] = f(x)·(y/x)^{( n/(n+1) )}+(y/x)^{n}
u^{n(n+1)+(-n)} = u^{n^{2}}
u·( 1+(-1)·u^{n^{2}+(-1)} )+(n+1)·x·d_{x}[u] = f(x)
y(x) = x·( sin-[f(x)]-d[n^{2}+(-1):1]( (-1)·(1/(n+1))·ln(x) ) )^{n+1}
d_{x}[y] = f(x)·(y/x)^{( n/(n+1) )}+(y/x)^{m}
u·( 1+(-1)·u^{m(n+1)+(-n)+(-1)} )+(n+1)·x·d_{x}[u] = f(x)
y(x) = x·( sin-[f(x)]-d[m(n+1)+(-n)+(-1):1]( (-1)·(1/(n+1))·ln(x) ) )^{n+1}
Teoría:
d_{x}[ sin-[f(x)]-d[n:1]( h(x) )·F(x) ] = ...
... ( ( sin-[f(x)]-d[n:1]( h(x) )·F(x) )·( cos-[f(x)]-d[n:1]( h(x) )·F(x) )+...
... (-1)·f(x)·( F(x) )^{2} )·d_{x}[h(x)]+...
... ( sin-[f(x)]-d[n:1]( h(x) )·F(x) )·d_{x}[F(x)]
( cos-[f(x)]-d[n:1]( h(x) )·F(x) )+( sin-[f(x)]-d[n:1]( h(x) )·F(x) )^{n} = 1
Si F(x) = 1 ==> d_{x}[F(x)] = 0
Si F(x) = k ==>
sin-[f(x)]-d[n:1]( h(x) )·k = ( sin-[k^{2}·f(x)]-d[n:1]( h(x) ) )
cos-[f(x)]-d[n:1]( h(x) )·k = ( cos-[k^{2}·f(x)]-d[n:1]( h(x) ) )
d_{x}[ sin-[k^{2}·f(x)]-d[n:1]( h(x) )/sin-[f(x)]-d[n:1]( h(x) ) ] = 0
d_{x}[ cos-[k^{2}·f(x)]-d[n:1]( h(x) )/cos-[f(x)]-d[n:1]( h(x) ) ] = 0
d_{x}[ sin-[f(x)]-d[n:1]( h(x) )·(F(x)+G(x)) ] = ...
... ( ( sin-[f(x)]-d[n:1]( h(x) )·(F(x)+G(x)) )·( cos-[f(x)]-d[n:1]( h(x) )·(F(x)+G(x)) )+...
... (-1)·f(x)·(F(x)+G(x))^{2} )·d_{x}[h(x)]+...
... ( sin-[f(x)]-d[n:1]( h(x) )·(F(x)+G(x)) )·d_{x}[F(x)+G(x)]
d_{x}[ sin-[f(x)]-d[n:1]( h(x) )·(F(x)+G(x)) ] = ...
... d_{x}[ sin-[f(x)]-d[n:1]( h(x) )·F(x) ]+...
... d_{x}[ sin-[f(x)]-d[n:1]( h(x) )·(2·F(x)·G(x))^{(1/2)} ]+...
... d_{x}[ sin-[f(x)]-d[n:1]( h(x) )·G(x) ]
sin-[f(x)]-d[n:1]( h(x) )·(2·F(x)·G(x))^{(1/2)}·d_{x}[(2·F(x)·G(x))^{(1/2)}] = ...
... sin-[f(x)]-d[n:1]( h(x) )·( F(x)d_{x}[G(x)]+d_{x}[F(x)]G(x) )
métode:
y = xu^{n+1}
d_{x}[y] = f(x)·(y/x)^{( n/(n+1) )}+(y/x)^{n}+g(x)·(y/x)
u·( 1+(-1)·u^{n^{2}+(-1)} )+(-1)·g(x)·u+(n+1)·x·d_{x}[u] = f(x)
y(x) = ...
... x·( sin-[( f(x)/( int[(1/(n+1))·(1/x)·g(x)]d[x] )^{2} )]-...
... d[n^{2}+(-1):1]( (-1)·(1/(n+1))·ln(x) )·...
... int[(1/(n+1))·(1/x)·g(x)]d[x] )^{n+1}
d_{x}[y] = f(x)·(y/x)^{( n/(n+1) )}+(y/x)^{m}+g(x)·(y/x)
u·( 1+(-1)·u^{m(n+1)+(-n)+(-1)} )+(-1)·g(x)·u+(n+1)·x·d_{x}[u] = f(x)
y(x) = ...
... x·( sin-[( f(x)/( int[(1/(n+1))·(1/x)·g(x)]d[x] )^{2} )]-...
... d[m(n+1)+(-n)+(-1):1]( (-1)·(1/(n+1))·ln(x) )·...
... int[(1/(n+1))·(1/x)·g(x)]d[x] )^{n+1}
No hay comentarios:
Publicar un comentario