martes, 5 de octubre de 2021

françé y ecuació diferencial

sacboir [o] kacboir

sé-pont [o] ké-pont

saps-pont [o] kaps-pont

sap-pont [o] kap-pont

sacboms [o] kacboms

sacboz [o] kacboz

sacben-puá [o] kacben-puá


bacboir [o] dacboir

bé-pont [o] dé-pont

baps-pont [o] daps-pont

bap-pont [o] dap-pont

bacboms [o] dacboms

bacboz [o] dacboz

bacben-puá [o] dacben-puá


Il sap-pont de-le-com vack ser bacboire-dom de la Font.

Ila sap-pont de-le-com vack ser bacboire-dom de la Font.


vuloir

ye vule ye-de-muá <==> vull-de-puá

tú vule tú-de-tuá <==> vols-de-puá

vule pont-de-suá <==> vol-de-puá

vuloms

vuloz

vulen-puá


fatzoir [o] detzir

ye fatze ye-de-muá [o] ye ditze ye-de-muá <==> fetx-kû [o] ditx-kû

tú fatze tú-de-tuá [o] tú ditze tú-de-tuá <==> fetx-kes [o] ditx-kes

fatze pont-de-suá [o] ditze pont-de-suá <==> fetx-ka [o] ditx-ka

fatzems [o] detzims <==> fem [o] diem

fatzez [o] detziz <==> feu [o] dieu

fatzen-puá [o] ditzen-puá <==> fetx-ken [o] ditx-ken


Il vule pont-de-suá fatzoire-dom un café avec ila-de-suá.

Ila vule pont-de-suá fatzoire-dom un café avec il-de-suá.


ye fatze ye-de-muá un café avec tú-de-tuá,

si tú vule tú-de-tuá.

tú fatze tú-de-tuá un café avec ye-de-muá,

si ye vule ye-de-muá.


vatxnar [o] datxnar

vaitx-pont [o] daitx-pont

vas-pont [o] das-pont

vack-pont [o] dack-pont

vatxnoms [o] datxnoms

vatxnoz [o] datxnoz

van-pont [o] dan-pont


tenoir [o] venir

ye tine ye-de-muá [o] ye vine ye-de-muá

tú tine tú-de-tuá [o] tú vine tú-de-tuá

tine pont-de-suá [o] vine pont-de-suá

tenems [o] venims

tenez [o] veniz

tenen-puá [o] venen-puá


nus venims de le nort y vatxnoms cap a le sur.

nus venims de le sur y vatxnoms cap a le nort.


d_{x}[y] = f(x)·(y/x)^{( n/(n+1) )}

y = xu^{n+1}

u+(n+1)·x·d_{x}[u] = f(x)

u = e^{(-1)·(1/(n+1))·ln(x)}·int[(1/(n+1))·(1/x)·f(x)·e^{(1/(n+1))·ln(x)}]d[x]

y = x·( e^{(-1)·(1/(n+1))·ln(x)}·int[(1/(n+1))·(1/x)·f(x)·e^{(1/(n+1))·ln(x)}]d[x] )^{(n+1)}

y = x·e^{(-1)·ln(x)}·( int[(1/(n+1))·(1/x)·f(x)·e^{(1/(n+1))·ln(x)}]d[x] )^{(n+1)}

Teorema de Pitágoras:

(a+b)^{2} = h^{2}+4·(1/2)·ab

[ah]+[hb] = [ab] = (pi/2)

[ah]+[hh]+[hb] = pi

[hh] = (pi/2)

Identitat Pitagórica: 

a^{2}+b^{2} = h^{2}

(a^{2}/h^{2})+(b^{2}/h^{2}) = (h^{2}/h^{2})

(a/h)^{2}+(b/h)^{2} = (h^{2}/h^{2}) = 1

( cos(x) )^{2}+( sin(x) )^{2} = 1


Si lo mundo vos odia,

pensad que ya no conocen al que me envió,

porque no son de esta especie,

y miente su alma.

Si lo mundo no vos odia,

pensad que aun conocen al que me envió,

porque son de esta especie,

y no miente su alma.


Ye estare ye-de-muá fatzointu-dom un café avec tú-de-tuá

Tú estare tú-de-tuá fatzointu-dom un café avec ye-de-muá

Ye havere ye-de-muá fatzoitu-dom un café avec tú-de-tuá

Tú havere tú-de-tuá fatzoitu-dom un café avec ye-de-muá


Françé-de-le-Patuá-y-Occitán-de-le-Pamuá:

Tú vols-de-puá [ fatzoire-dom ]-[ fatzoir ] un café avec [ ye-de-muá ]-[ ye-de-mi ]

Ye vull-de-puá [ fatzoire-dom ]-[ fatzoir ] un café avec [ tú-de-tuá ]-[ tú-de-ti ]


ye tine ye-de-muá anai-dom-otza-duá,

perque fatze pont-de-suá otzaté.

ye tine ye-de-muá anai-dom-bero-duá,

perque fatze pont-de-suá beroté.


Métode:

y = xu^{n+1}

d_{x}[y] = f(x)·(y/x)^{( n/(n+1) )}+(y/x)

(n+1)·x·d_{x}[u] = f(x)

y(x) = x·( (1/(n+1))·int[f(x)]d[x] [o(x)o] ln(x) )^{(n+1)}


d_{x}[y] = f(x)·(y/x)^{( n/(n+1) )}

u+(n+1)·x·d_{x}[u] = f(x)

y(x) = x·e^{(-1)·ln(x)}·( int[(1/(n+1))·(1/x)·f(x)·e^{(1/(n+1))·ln(x)}]d[x] )^{(n+1)}


Teoría:

d_{x}[ sin-[f(x)]-d[n:1]( h(x) ) ] = ...

... ( ( sin-[f(x)]-d[n:1]( h(x) ) )·( cos-[f(x)]-d[n:1]( h(x) ) )+(-1)·f(x) )·d_{x}[h(x)]

( cos-[f(x)]-d[n:1]( h(x) ) )+( sin-[f(x)]-d[n:1]( h(x) ) )^{n} = 1


Métode:

y = xu^{n+1}

d_{x}[y] = f(x)·(y/x)^{( n/(n+1) )}+(y/x)^{n}

u^{n(n+1)+(-n)} = u^{n^{2}}

u·( 1+(-1)·u^{n^{2}+(-1)} )+(n+1)·x·d_{x}[u] = f(x)

y(x) = x·( sin-[f(x)]-d[n^{2}+(-1):1]( (-1)·(1/(n+1))·ln(x) ) )^{n+1}


d_{x}[y] = f(x)·(y/x)^{( n/(n+1) )}+(y/x)^{m}

u·( 1+(-1)·u^{m(n+1)+(-n)+(-1)} )+(n+1)·x·d_{x}[u] = f(x)

y(x) = x·( sin-[f(x)]-d[m(n+1)+(-n)+(-1):1]( (-1)·(1/(n+1))·ln(x) ) )^{n+1}


Teoría:

d_{x}[ sin-[f(x)]-d[n:1]( h(x) )·F(x) ] = ...

... ( ( sin-[f(x)]-d[n:1]( h(x) )·F(x) )·( cos-[f(x)]-d[n:1]( h(x) )·F(x) )+...

... (-1)·f(x)·( F(x) )^{2} )·d_{x}[h(x)]+...

... ( sin-[f(x)]-d[n:1]( h(x) )·F(x) )·d_{x}[F(x)]

( cos-[f(x)]-d[n:1]( h(x) )·F(x) )+( sin-[f(x)]-d[n:1]( h(x) )·F(x) )^{n} = 1

Si F(x) = 1 ==> d_{x}[F(x)] = 0

Si F(x) = k ==>

sin-[f(x)]-d[n:1]( h(x) )·k = ( sin-[k^{2}·f(x)]-d[n:1]( h(x) ) )

cos-[f(x)]-d[n:1]( h(x) )·k = ( cos-[k^{2}·f(x)]-d[n:1]( h(x) ) )

d_{x}[ sin-[k^{2}·f(x)]-d[n:1]( h(x) )/sin-[f(x)]-d[n:1]( h(x) ) ] = 0

d_{x}[ cos-[k^{2}·f(x)]-d[n:1]( h(x) )/cos-[f(x)]-d[n:1]( h(x) ) ] = 0


d_{x}[ sin-[f(x)]-d[n:1]( h(x) )·(F(x)+G(x)) ] = ...

... ( ( sin-[f(x)]-d[n:1]( h(x) )·(F(x)+G(x)) )·( cos-[f(x)]-d[n:1]( h(x) )·(F(x)+G(x)) )+...

... (-1)·f(x)·(F(x)+G(x))^{2} )·d_{x}[h(x)]+...

... ( sin-[f(x)]-d[n:1]( h(x) )·(F(x)+G(x)) )·d_{x}[F(x)+G(x)]

d_{x}[ sin-[f(x)]-d[n:1]( h(x) )·(F(x)+G(x)) ] = ...

... d_{x}[ sin-[f(x)]-d[n:1]( h(x) )·F(x) ]+...

... d_{x}[ sin-[f(x)]-d[n:1]( h(x) )·(2·F(x)·G(x))^{(1/2)} ]+...

... d_{x}[ sin-[f(x)]-d[n:1]( h(x) )·G(x) ]

sin-[f(x)]-d[n:1]( h(x) )·(2·F(x)·G(x))^{(1/2)}·d_{x}[(2·F(x)·G(x))^{(1/2)}] = ...

... sin-[f(x)]-d[n:1]( h(x) )·( F(x)d_{x}[G(x)]+d_{x}[F(x)]G(x) )


métode:

y = xu^{n+1}

d_{x}[y] = f(x)·(y/x)^{( n/(n+1) )}+(y/x)^{n}+g(x)·(y/x)

u·( 1+(-1)·u^{n^{2}+(-1)} )+(-1)·g(x)·u+(n+1)·x·d_{x}[u] = f(x)

y(x) = ...

... x·( sin-[( f(x)/( int[(1/(n+1))·(1/x)·g(x)]d[x] )^{2} )]-...

... d[n^{2}+(-1):1]( (-1)·(1/(n+1))·ln(x) )·...

... int[(1/(n+1))·(1/x)·g(x)]d[x] )^{n+1}


d_{x}[y] = f(x)·(y/x)^{( n/(n+1) )}+(y/x)^{m}+g(x)·(y/x)

u·( 1+(-1)·u^{m(n+1)+(-n)+(-1)} )+(-1)·g(x)·u+(n+1)·x·d_{x}[u] = f(x)

y(x) = ...

... x·( sin-[( f(x)/( int[(1/(n+1))·(1/x)·g(x)]d[x] )^{2} )]-...

... d[m(n+1)+(-n)+(-1):1]( (-1)·(1/(n+1))·ln(x) )·...

... int[(1/(n+1))·(1/x)·g(x)]d[x] )^{n+1}

No hay comentarios:

Publicar un comentario