(-1)·( cosh[1:n+1](x) )^{n+1}+sinh[1:n+1](x) = (-1)
d_{x}[y] = ( y^{(n+1)}+(-1) )/( y+(-m) )
(y+(-m))·d_{x}[y] = y^{(n+1)}+(-1)
( cosh[1:n+1]( f(x) )+(-m) )·d_{x}[f(x)] = 1
sinh[1:n+1]( f(x) )+(-m)·( f(x) ) ) = x
sinh[1:n+1]-sum[(-m)]( f(x) ) = x
f(x) = anti-sinh[1:n+1]-sum[(-m)](x)
y(x) = cosh[1:n+1]( anti-sinh[1:n+1]-sum[(-m)](x) )
d_{x}[ anti-sinh[1:n+1]-sum[(-m)](x) ] = ...
... ( 1/( cosh[1:n+1]( anti-sinh[1:n+1]-sum[(-m)](x) )+(-m) ) )
f^{o(-1)}(x) = y
d_{x}[f^{o(-1)}(x)] = ( 1/d_{y}[f(y)] )
y = ln(x)
d_{x}[ln(x)] = ( 1/d_{y}[e^{y}] ) = (1/e^{y}) = (1/x)
y = arc-sin(x)
d_{x}[arc-sin(x)] = ( 1/d_{y}[sin(y)}] ) = (1/cos(y)) = ...
... ( 1/( 1+(-1)·( sin(y) )^{2} )^{(1/2)} ) = ( 1/( 1+(-1)·x^{2} )^{(1/2)} )
d_{x}[ anti-ln-pow[n](x) ] = ...
... ( y/(n·y^{n}ln(y)+y^{n}) ) = ( y/(n·ln-pow[n](y)+y^{n}) )
... ( anti-ln-pow[n](x)/(nx+( anti-ln-pow[n](x) )^{n}) )
d_{x}[ anti-e-pow[n](x) ] = ...
... ( y/(n·y^{n}e^{y}+y^{n}e^{y}y) ) = ( y/(n·e-pow[n](y)+e-pow[n](y)y) )
... ( 1/e-pow[n](y) )·( y/(n+y) ) = (1/x)·( anti-e-pow[n](x)/(n+anti-e-pow[n](x)) )
d_{x}[ anti-ln-[+]-sum[n](x) ] = ...
... ( 1/((1/y)+n) ) = ( y/(1+ny) )
... ( anti-ln-[+]-sum[n](x)/(1+n·anti-ln-[+]-sum[n](x)) )
d_{x}[ anti-e-[+]-sum[n](x) ] = ...
... ( 1/(e^{y}+n) ) = ( 1/(e^{y}+ny+n·(1+(-y)) ) = ( 1/( e-[+]-sum[n](y)+n·(1+(-y)) ) )
... ( 1/( x+n·(1+(-1)·anti-e-[+]-sum[n](x)) ) )
ln(x)+nx = c
ln-[+]-sum[n](x) = c
x = anti-ln-[+]-sum[n](c)
e^{x}+nx = c
e-[+]-sum[n](x) = c
x = anti-e-[+]-sum[n](c)
ln(x)+nx^{m+1} = c
x^{m}·( ln(x)/x^{m}+nx ) = c
x^{m}·( ln-pow[(-m)](x)+nx ) = c
x^{m}·( ln-pow[(-m)]-[+]-sum[n](x) ) = c
( ln-pow[(-m)]-pow[m]-[+]-sum[n]-pow[m](x) ) = c
( ln-[+]-sum[n]-pow[m](x) ) = c
x = anti-ln-[+]-sum[n]-pow[m](c)
e^{x}+nx^{m+1} = c
x = anti-e-[+]-sum[n]-pow[m](c)
x^{k}·ln(x)+nx^{m+1} = c
x = anti-ln-pow[k]-[+]-sum[n]-pow[m](c)
x^{k}·e^{x}+nx^{m+1} = c
x = anti-e-pow[k]-[+]-sum[n]-pow[m](c)
No hay comentarios:
Publicar un comentario