lunes, 4 de octubre de 2021

ecuacions diferencials

d_{x}[ arc-sin-up-[1]-pow[n](x) ] = ...

... ( arc-sin-up-[1]-pow[n](x) )^{n}·( 1+(-1)·( arc-sin-up-[1]-pow[n](x) )^{2} )^{(1/2)}

d_{x}[y(x)] = ( sin(y) )^{n}


d_{x}[ arc-sin-up-[k]-pow[n](x) ] = ...

... ( arc-sin-up-[k]-pow[n](x) )^{n}·...

... ( 1+(-1)·( arc-sin-up-[k]-pow[n](x) )^{k+1} )^{(1/(k+1))}

d_{x}[y(x)] = ( sin[k](y) )^{n}


anti-arc-sin-dawn-[1]-pow[(-n)](x) = ...

... (1/((-n)+1))·x^{(-n)+1} [o(x)o] (-1)·( 1+(-1)·x^{2} )^{(1/2)} [o(x)o] ln(x)

d_{x}[y(x)] = x^{(-n)}·(1+(-1)·x^{2})^{(-1)·(1/2)}


anti-arc-sin-dawn-[k]-pow[(-n)](x) = ...

... (1/((-n)+1))·x^{(-n)+1} [o(x)o] ...

... (-1)·(1/k)·( 1+(-1)·x^{k+1} )^{(k/(k+1))} [o(x)o] (1/((-k)+1))·x^{(-k)+1}

d_{x}[y(x)] = x^{(-n)}·(1+(-1)·x^{k+1})^{(-1)·(1/(k+1))}

No hay comentarios:

Publicar un comentario