h = (-1)·qg
(-1) [< u [< 1 & 1 [< v [< e
L(x,u,v) = qg·x(u,v)+h( (1/2)·u^{2}+ln(v) )
x(u,v) = ( (1/2)·u^{2}+ln(v) )
S_{uu} = int-int[ u^{2} ] d[u]d[u] = (1/12)·u^{4} = (1/12)·d_{u}[x]^{4}
S_{vv} = int-int[ (1/v^{2}) ] d[v]d[v] = ln(1/v) = ln( d_{v}[x] )
d_{x}[ H_{u}( d_{u}[x] ) ]^{(1/2)} = (1/12)·d_{u}[x]^{4} = (1/12)·u^{4}
H_{u}( d_{u}[x] ) = ( (1/12)·u^{4} )^{[o(x)o]2} = ...
... ( (1/60)·u^{5} )^{[o(u)o]2} [o(u)o] x = ...
... ( (1/1296)·u^{9} ) [o(u)o] x
H_{u}( d_{u}[x] ) = ( (1/1296)·d_{u}[x]^{9} ) [o(u)o] int[ d_{u}[x] ] d[u]
d_{x}[ H_{v}( d_{v}[x] ) ]^{(1/2)} = ln( d_{v}[x] ) = ln(1/v)
H_{v}( d_{v}[x] ) = ( ln(1/v) )^{[o(x)o]2} = ...
... ( ( ln(1/v) )^{2}·[er]_{k!:2}( ln(1/v) ) )^{[o(v)o]2} [o(v)o] x = ...
... ( (-1)·(1/3)·( ln(1/v) )^{3} [o(v)o] (1/2)·v^{2} ) [o(v)o] x
H_{v}( d_{v}[x] ) = ...
... ( (-1)·(1/3)·( ln( d_{v}[x] ) )^{3} [o(v)o] (1/2)·( 1/d_{v}[x] )^{2} ) [o(v)o] ...
.... int[ d_{v}[x] ] d[v]
No hay comentarios:
Publicar un comentario