x^{5}+ax^{3}+(a^{2}/5)·x+c = 0
u^{5}+v^{5} = c
5uv( u^{3}+v^{3} ) = a·( u^{3}+v^{3} )
10·(uv)^{2}( u+v ) = (2a)·uv·(u+v)
a·uv(u+v) = (a^{2}/5)·(u+v)
x^{5}+5x^{3}+5x+c = 0
x^{5}+10x^{3}+20x+c = 0
f(x) = f(a)+c_{1}·(e^{x}+(-1)·e^{a})+c_{2}·(e^{x}+(-1)·e^{a})^{2}+...
... c_{n}·(e^{x}+(-1)·e^{a})^{n}+...
d_{x}[f(a)] = c_{1}·e^{a}
c_{1} = d_{x}[f(a)]·e^{(-a)}
d_{xx}^{2}[f(a)] = c_{1}·e^{a}+c_{2}e^{2a}
c_{2} = ( d_{xx}^{2}[f(a)]+(-1)·d_{x}[f(a)] )·e^{(-2)a}
d_{xxx}^{3}[f(a)] = c_{1}e^{a}+c_{2}e^{2a}+c_{3}e^{3a}
c_{3} = ( d_{xxx}^{3}[f(a)]+(-1)·d_{xx}^{2}[f(a)] )·e^{(-3)a}
e^{x} = e^{a}+(e^{x}+(-1)·e^{a})
e^{(-x)} = ( 2+(-1)·e^{x} )+2·sum[ k = 2 --> oo ][ (-1)^{k}·(e^{x}+(-1))^{k} ]
cosh(x) = 1+sum[ k = 2 --> oo ][ (-1)^{k}·(e^{x}+(-1))^{k} ]
sinh(x) = ( e^{x}+(-1) )+(-1)·sum[ k = 2 --> oo ][ (-1)^{k}·(e^{x}+(-1))^{k} ]
No hay comentarios:
Publicar un comentario