(m/2)·d_{t}[x]^{2} = a_{3}·(4/3)·x^{3}+...
... (1/(2m))·( qgt )^{2}+(-1)·(a_{2}/2)·( e^{i·(a_{2}/m)^{(1/2)}·t} )^{2}
x(t) = [[(-2)]]( (-1)·(1/2)·( (2/m)·a_{3}·(4/3) )^{(1/2)}·t , ...
... ( ...
... (1/m^{2})·(qg)^{2}·(1/12)·t^{4}+...
... (1/4)·( e^{i·(a_{2}/m)^{(1/2)}·t} )^{2} ...
... )^{(-1)·(1/4)})
mecánica lineal:
energía:
mc·d_{t}[x(t)] = E_{1}(x)+...+E_{n}(x)
fuerza:
mc·d_{tt}^{2}[x(t)]·(1/d_{t}[x]) = d_{x}[ E_{1}(x)+...+E_{n}(x) ]
potencia:
mc·d_{tt}^{2}[x(t)] = d_{t}[ E_{1}(x)+...+E_{n}(x) ]
sin momento:
mc != mc·ln( d_{t}[x] )
mecánica clásica:
energía:
(m/2)·d_{t}[x(t)]^{2} = E_{1}(x)+...+E_{n}(x)
fuerza:
m·d_{tt}^{2}[x(t)] = d_{x}[ E_{1}(x)+...+E_{n}(x) ]
potencia:
m·d_{tt}^{2}[x(t)]·d_{t}[x(t)] = d_{t}[ E_{1}(x)+...+E_{n}(x) ]
momento:
m·d_{t}[x(t)] = int[ d_{x}[ E_{1}(x)+...+E_{n}(x) ] ] d[t]
mecánica enésima:
energía:
(1/n)·(m/c^{n+(-2)})·d_{t}[x(t)]^{n} = E_{1}(x)+...+E_{n}(x)
fuerza:
(m/c^{n+(-2)})·d_{t}[x(t)]^{n+(-2)}·d_{tt}^{2}[x(t)] = d_{x}[ E_{1}(x)+...+E_{n}(x) ]
potencia:
((mc)/c^{n+(-1)})·d_{t}[x(t)]^{n+(-1)}·d_{tt}^{2}[x(t)] = d_{x}[ E_{1}(x)+...+E_{n}(x) ]
momento:
n != 2 ==>
(m/c^{n+(-2)})·d_{t}[x(t)]^{n+(-1)} != (m/c^{n+(-2)})·(1/(n+(-1)))·d_{t}[x(t)]^{n+(-1)}
No hay comentarios:
Publicar un comentario