lunes, 5 de octubre de 2020

hyper-espai

producte = n

m·( d_{t}[x]/( 1+(-1)·(d_{t}[x]^{2}/(nc)^{2}) )^{(1/2)} ) = p

m·( d_{tt}^{2}[x]/( 1+(-1)·(d_{t}[x]^{2}/(nc)^{2}) )^{(3/2)} ) = F

m·(nc)^{2}·( 1/( 1+(-1)·(d_{t}[x]^{2}/(nc)^{2}) )^{(1/2)} ) = E


d_{t}[x] = ( 1+(-1)( (m·(nc)^{2})/E ) )^{(1/2)}·(nc)

x(t) = ( 1+(-1)( (m·(nc)^{2})/E ) )^{(1/2)}·(nc)·t


energía en repós:

E_{0} = m·(nc)^{2}


u(x,y,z,ct) = (1/3)·( x^{2}+y^{2}+z^{2} )+(-1)·((nc)·t)^{2}

d_{xx}^{2}[u(x,y,z,ct)]+d_{yy}^{2}[u(x,y,z,ct)]+d_{zz}^{2}[u(x,y,z,ct)] = ...

... (-1)·( 1/n^{2} )·d_{(ct)(ct)}^{2}[u(x,y,z,ct)] = ...

... (-1)·( 1/(nc)^{2} )·d_{tt}^{2}[u(x,y,z,ct)]


(nc)·t = b·( (nc)·t+u·t )

(nc)·t = b·( (nc)·t+(-u)·t )


(nc)^{2}·t^{2} = b^{2}·( (nc)^{2}·t^{2}+(-1)·u^{2}·t^{2} )

(nc)^{2} = b^{2}·( (nc)^{2}+(-1)·u^{2} )

b^{2} = ( 1/(1+(-1)(u^{2}/(nc)^{2})) )

b = ( 1/(1+(-1)(u^{2}/(nc)^{2}))^{(1/2)} )

No hay comentarios:

Publicar un comentario