viernes, 9 de octubre de 2020

successions de recurrencia

{

a = 1;

b = 1;

for( k = 1 ; k [< n ; k++ )

{

c = a+b

b = a

a = c

escriure(a);

escriure(b);

}

}


{

a = not(1);

b = not(1);

for( k = not(1) ; k >] not(n) ; k-- )

{

not(c) = not(a)+not(b)

not(b) = not(a)

not(a) = not(c)

escriure(not(a));

escriure(not(b));

}

}


not(b) = a:

mov bx,a

mov ax,[bx]

mov bx,b

mov dx,ax

not dx

mov [bx],dx

}

not(b) = not(a):

mov bx,a

mov ax,[bx]

not ax

mov bx,b

mov dx,ax

not dx

mov [bx],dx

}


b = a:

mov bx,a

mov ax,[bx]

mov bx,b

mov dx,ax

mov [bx],dx

}

b = not(a):

mov bx,a

mov ax,[bx]

not ax

mov bx,b

mov dx,ax

mov [bx],dx

}


a_{n} = a_{n+(-1)}+a_{n+(-2)}

a_{1} = a ==> ...

... a_{6k+1} = (4k·11^{k+(-1)}+1)·a+(4k·(k+1))·6^{k+(-1)}·b

a_{2} = b ==> ...

... a_{6k+2} = (4k·(k+1))·6^{k+(-1)}·a+(4k·(3^{3(k+(-1))}+2)+1)·b

a_{3} = a+b ==> 

a_{4} = a+2b ==>

a_{5} = 2a+3b ==> 

a_{6} = 3a+5b ==> 

a_{7} = 5a+8b

a_{8} = 8a+13b

a_{9} = 13a+21b

a_{10} = 21a+34b

a_{11} = 34a+55b

a_{12} = 55a+89b

a_{13} = 89a+144b

a_{14} = 144a+233b

No hay comentarios:

Publicar un comentario