martes, 19 de mayo de 2020

ecuació diferencial exponencial integral

d_{xx}^{2}[ e^{[o(x)o]^{2} ∫ [ ( ∫ [2·g(x)] d[x] )^{(1/2)} ] d[x] } ] = ...
... g(x)·e^{[o(x)o]^{2} ∫ [ ( ∫ [2·g(x)] d[x] )^{(1/2)} ] d[x] }


d_{xx}^{2}[ e^{[o(x)o]^{2}f(x)} ] = e^{[o(x)o]^{2}f(x)}·d_{x}[f(x)]·d_{xx}^{2}[f(x)]


d_{xx}^{2}[y(x)] = g(x)·y(x)


y(x) = e^{[o(x)o]^{2} ∫ [ ( ∫ [2·g(x)] d[x] )^{(1/2)} ] d[x] }


d_{x}[ e^{[o(x)o]^{n}f(x)} ] = e^{[o(x)o]^{n}f(x)} [o(x)o]^{n+(-1)} d_{x}[f(x)]


d_{xx}^{2}[ e^{[o(x)o]^{n}f(x)} ] = ...
... e^{[o(x)o]^{n}f(x)} [o(x)o]^{n+(-2)} d_{x}[f(x)] [o(x)o]^{n+(-2)} d_{xx}^{2}[f(x)]


d_{x,...,x}^{n}[ e^{[o(x)o]^{n}f(x)} ] = e^{[o(x)o]^{n}f(x)}·d_{x}[f(x)]·...(n)...·d_{x,...,x}^{n}[f(x)]

No hay comentarios:

Publicar un comentario