domingo, 17 de mayo de 2020

pitch de velocitat y ganancies de so

∫ [0-->x]-[f(x)] d[x] = Vt


∫ [0-->x]-[f(x)·d_{t}[x] ] d[t] = Vt


f(x) = (1/2)·( V^{(1/2)}·t )^{2}


x(t) = V^{(1/2)}·t


∫ [0-->x]-[f(x)] d[x] = Vt^{n}


∫ [0-->x]-[f(x)·d_{t}[x] ] d[t] = Vt^{n}


kn+k=1


f(x) = (1/(n+1))·( V^{(1/(n+1))}·t )^{(n+1)}


x(t) = V^{(1/(n+1))}·t


∫ [0-->x]-[f(x)] d[x] = V^{m}t^{n}


∫ [0-->x]-[f(x)·d_{t}[x] ] d[t] = V^{m}t^{n}


f(x) = (1/(n+1))·( V^{(m/(n+1))}·t )^{(n+1)}


x(t) = V^{(m/(n+1))}·t

No hay comentarios:

Publicar un comentario