∫ [0-->x]-[f(x)] d[x] = Vt
∫ [0-->x]-[f(x)·d_{t}[x] ] d[t] = Vt
f(x) = (1/2)·( V^{(1/2)}·t )^{2}
x(t) = V^{(1/2)}·t
∫ [0-->x]-[f(x)] d[x] = Vt^{n}
∫ [0-->x]-[f(x)·d_{t}[x] ] d[t] = Vt^{n}
kn+k=1
f(x) = (1/(n+1))·( V^{(1/(n+1))}·t )^{(n+1)}
x(t) = V^{(1/(n+1))}·t
∫ [0-->x]-[f(x)] d[x] = V^{m}t^{n}
∫ [0-->x]-[f(x)·d_{t}[x] ] d[t] = V^{m}t^{n}
f(x) = (1/(n+1))·( V^{(m/(n+1))}·t )^{(n+1)}
x(t) = V^{(m/(n+1))}·t
No hay comentarios:
Publicar un comentario