R es simétrica <==> R = R^{o(-1)}
Si ( R simétrica & R es transitiva ) ==> R es reflexiva.
<x,y> € R
<x,y> € R^{o(-1)}
<y,x> € R
( <x,y> € R & <y,x> € R ) & ( <y,x> € R & <x,y> € R )
<x,x> € R & <y,y> € R
( RoS )^{o(-1)} = ( S^{o(-1)}oR^{o(-1)} )
Si ( R es simétrica & S es simétrica ) ==> RoS = ( SoR )^{o(-1)}
<x,y> € RoS
<x,z> € S & <z,y> € R
<y,z> € R & <z,x> € S
<y,x> € SoR
<x,y> € ( SoR )^{o(-1)}
R es transitiva <==> RoR [<< R
[==>]
<x,y> € RoR
<x,z> € R & <z,y> € R
<x,y> € RoR
[<==]
<x,y> € R & <y,z> € R
<x,z> € RoR
<x,z> € R
Si R es transitiva ==> RoR es transitiva
<x,y> € RoR & <y,z> € RoR
( <x,u> € R & <u,y> € R ) & ( <y,v> € R & <v,z> € R )
<x,y> € R & <y,z> € R
<x,z> € RoR
( A [W] B )oR = (AoR) [W] (BoR)
<x,y> € ( A [W] B )oR
<x,z> € A [W] B & <z,y> € R
( <x,z> € A & <z,y> € R ) || ( <x,z> € B & <z,y> € R )
<x,y> € (AoR) [W] (BoR)
( A [M] B )oR = (AoR) [M] (BoR)
<x,y> € ( A [M] B )oR
<x,z> € A [M] B & <z,y> € R [ ( a & a ) <==> a ]
( <x,z> € A & <z,y> € R ) & ( <x,z> € B & <z,y> € R )
<x,y> € (AoR) [M] (BoR)
Si R es transitiva ==> ( R es asimétrica <==> R es irreflexiva )
[==>]
( Si <x,y> € R ==> ¬( <y,x> € R ) )
Sigui y = x ==>
Si <x,x> € R ==>
¬( <x,x> € R )
[<==]
Si ¬( Si <x,y> € R ==> ¬( <y,x> € R ) )
<x,y> € R & <y,x> € R
<x,x> € R
No hay comentarios:
Publicar un comentario