Si s_{1}·u_{1}+...(n)...+s_{n}·u_{n} = 0 ==> [Aj][ s_{j} = 0 ]
Si ( u_{1} )^{s_{1}}·...(n)...·( u_{n} )^{s_{n}} = 1 ==> [Aj][ s_{j} = 0 ]
Si ( ( a != 0 ) & ( a != 1 ) ) ==>
i·<a,0>+j·<0,a> = <0,0> ==> ( i = 0 & j = 0 )
( <a,1> )^{i}·( <1,a> )^{j} = <1,1> ==> ( i = 0 & j = 0 )
i·<a,0>+j·<0,a> = <(k·a),(k·a)> ==> ( i = k & j = k )
( <a,1> )^{i}·( <1,a> )^{j} = <a^{k},a^{k}> ==> ( i = k & j = k )
i·<a,0>+j·<0,a> = <(k·a),0> ==> ( i = k & j = 0 )
( <a,1> )^{i}·( <1,a> )^{j} = <a^{k},1> ==> ( i = k & j = 0 )
i·<a,0>+j·<0,a> = <0,(k·a)> ==> ( i = 0 & j = k )
( <a,1> )^{i}·( <1,a> )^{j} = <1,a^{k}> ==> ( i = 0 & j = k )
i·<a,0>+j·<0,a> = <b,0> ==> ( i = (b/a) & j = 0 )
( <a,1> )^{i}·( <1,a> )^{j} = <b,1> ==> ( i = log_{a}(b) & j = 0 )
i·<a,0>+j·<0,a> = <0,b> ==> ( i = 0 & j = (b/a) )
( <a,1> )^{i}·( <1,a> )^{j} = <1,b> ==> ( i = 0 & j = log_{a}(b) )
i·<1,0>+j·<0,1> = <k,k> ==> ( i = k & j = k )
( <0,1> )^{i}·( <1,0> )^{j} = <k,k> ==> ( i = log_{0}(k) & j = log_{0}(k) )
No hay comentarios:
Publicar un comentario