lunes, 23 de noviembre de 2020

combinacions lineals

Si s_{1}·u_{1}+...(n)...+s_{n}·u_{n} = 0 ==> [Aj][ s_{j} = 0 ]

Si ( u_{1} )^{s_{1}}·...(n)...·( u_{n} )^{s_{n}} = 1 ==> [Aj][ s_{j} = 0 ]


Si ( ( a != 0 ) & ( a != 1 ) ) ==>

i·<a,0>+j·<0,a> = <0,0> ==> ( i = 0 & j = 0 )

( <a,1> )^{i}·( <1,a> )^{j} = <1,1> ==> ( i = 0 & j = 0 )


i·<a,0>+j·<0,a> = <(k·a),(k·a)> ==> ( i = k & j = k )

( <a,1> )^{i}·( <1,a> )^{j} = <a^{k},a^{k}> ==> ( i = k & j = k )


i·<a,0>+j·<0,a> = <(k·a),0> ==> ( i = k & j = 0 )

( <a,1> )^{i}·( <1,a> )^{j} = <a^{k},1> ==> ( i = k & j = 0 )


i·<a,0>+j·<0,a> = <0,(k·a)> ==> ( i = 0 & j = k )

( <a,1> )^{i}·( <1,a> )^{j} = <1,a^{k}> ==> ( i = 0 & j = k )


i·<a,0>+j·<0,a> = <b,0> ==> ( i = (b/a) & j = 0 )

( <a,1> )^{i}·( <1,a> )^{j} = <b,1> ==> ( i = log_{a}(b) & j = 0 )


i·<a,0>+j·<0,a> = <0,b> ==> ( i = 0 & j = (b/a) )

( <a,1> )^{i}·( <1,a> )^{j} = <1,b> ==> ( i = 0 & j = log_{a}(b) )


i·<1,0>+j·<0,1> = <k,k> ==> ( i = k & j = k )

( <0,1> )^{i}·( <1,0> )^{j} = <k,k> ==> ( i = log_{0}(k) & j = log_{0}(k) )

No hay comentarios:

Publicar un comentario