det( a^{k}_{ij} ) = ...
... ( a^{1}_{11}a^{2}_{22}+(-1)·a^{2}_{11}a^{1}_{22} )+...
... ( a^{1}_{12}a^{2}_{21}+(-1)·a^{2}_{12}a^{1}_{21} )
A^{k}_{ij}·a_{i}a_{j} = a^{k}
a_{1} = a & a_{2} = b
A^{1}_{11} = (1/a) & A^{2}_{22} = (1/b)
A^{2}_{11} = (b/a^{2}) & A^{1}_{22} = (a/b^{2})
A^{1}_{21} = (1/b) & A^{2}_{12} = (1/a)
A^{2}_{21} = (1/a) & A^{1}_{12} = (1/b)
det( A^{k}_{ij} ) = 0
A^{k}_{ij}·a_{i}a_{j} = ( a^{k} )^{n}
a_{1} = a & a_{2} = b
A^{1}_{11} = a^{(n+(-2))} & A^{2}_{22} = b^{(n+(-2))}
A^{2}_{11} = (b^{n}/a^{2}) & A^{1}_{22} = (a^{n}/b^{2})
A^{1}_{21} = (a^{(n+(-1))}/b) & A^{2}_{12} = (b^{(n+(-1))}/a)
A^{2}_{21} = (b^{(n+(-1))}/a) & A^{1}_{12} = (a^{(n+(-1))}/b)
det( A^{k}_{ij} ) = 0
A^{k}_{ij}·( a_{i} )^{p}·( a_{j} )^{q} = ( a^{k} )^{n}
a_{1} = a & a_{2} = b
A^{1}_{11} = (a^{n}/a^{(p+q)}) & A^{2}_{22} = (b^{n}/b^{(p+q)})
A^{2}_{11} = (b^{n}/a^{p+q}) & A^{1}_{22} = (a^{n}/b^{p+q})
A^{1}_{21} = (a^{(n+(-q))}/b^{p}) & A^{2}_{12} = (b^{(n+(-q))}/a^{p})
A^{2}_{21} = (b^{(n+(-p))}/a^{q}) & A^{1}_{12} = (a^{(n+(-p))}/b^{q})
det( A^{k}_{ij} ) = 0
det( b^{k}_{i} ) = b^{1}_{1}b^{2}_{2}+(-1)·b^{2}_{1}b^{1}_{2}
B^{k}_{i}·b_{i} = b^{k}
b_{1} = a & b_{2} = b
B^{1}_{1} = 1 & B^{2}_{2} = 1
B^{2}_{1} = (b/a) & B^{1}_{2} = (a/b)
det( B^{k}_{i} ) = 0
B^{k}_{i}·b_{i} = ( b^{k} )^{n}
b_{1} = a & b_{2} = b
B^{1}_{1} = a^{(n+(-1))} & B^{2}_{2} = b^{(n+(-1))}
B^{2}_{1} = (b^{n}/a) & B^{1}_{2} = (a^{n}/b)
det( B^{k}_{i} ) = 0
B^{k}_{i}·( b_{i} )^{m} = ( b^{k} )^{n}
b_{1} = a & b_{2} = b
B^{1}_{1} = a^{(n+(-m))} & B^{2}_{2} = b^{(n+(-m))}
B^{2}_{1} = (b^{n}/a^{m}) & B^{1}_{2} = (a^{n}/b^{m})
det( B^{k}_{i} ) = 0
Contracció Tensorial:
A^{j}_{ij}·a_{i}a_{j} = a^{j}
a_{1} = a & a_{2} = b
A^{1}_{11} = (1/a) & A^{2}_{22} = (1/b)
A^{1}_{21} = (1/b) & A^{2}_{12} = (1/a)
det( A^{j}_{ij} ) = 0
A^{j}_{ji}·a_{j}a_{i} = a^{j}
a_{1} = a & a_{2} = b
A^{1}_{11} = (1/a) & A^{2}_{22} = (1/b)
A^{1}_{12} = (1/b) & A^{2}_{21} = (1/a)
det( A^{j}_{ji} ) = 0
Teorema de contraccions tensorials:
Sum[ A^{k}_{ij} ] = Sum[ ( A^{j}_{ij}+A^{j}_{ii}+A^{j}_{ji} ) ]+(-2)·Sum[ A^{i}_{ii} ]
Prod[ A^{k}_{ij} ] = ( Prod[ ( A^{j}_{ij}·A^{j}_{ii}·A^{j}_{ji} ) ]/( Prod[ A^{i}_{ii} ] )^{2} )
No hay comentarios:
Publicar un comentario