teorema:
Si a < c_{n} < b ==> [∃c_{n_{k}}][ a < c_{n_{k}} < b & lim c_{n_{k}} = c ]
Demostració:
lim a_{n} = c
lim b_{n} = c
a_{n} [< c_{n_{k}} [< ( (a_{n}+b_{n})/2 ) or ( (a_{n}+b_{n})/2 ) [< c_{n_{k}} [< b_{n}
c [< c_{n_{k}} [< ( (c+c)/2 ) or ( (c+c)/2 ) [< c_{n_{k}} [< c
No hay comentarios:
Publicar un comentario