martes, 24 de diciembre de 2019

tangent y cotangent integral

tan[o(x)o](x) = ∫ [ (-1)·(cos(x)/sin(x)) ] d[x] = ∫ [ (-1)cotan(x) ] d[x]


cotan[o(x)o](x) = ∫ [ (-1)^{(-1)}·(sin(x)/cos(x)) ] d[x] = ∫ [ (-1)^{(-1)}·tan(x) ] d[x]


d_{x}[ tan[o(x)o](x) ] = (-1)·cotan(x)


d_{x}[ cotan[o(x)o](x) ] = (-1)^{(-1)}·tan(x)


d_{x}[ ( tan[o(x)o](x) )^{[o(x)o]n} ] = ( (-1)·cotan(x) )^{n}


d_{x}[ ( cotan[o(x)o](x) )^{[o(x)o]n} ] = ( (-1)^{(-1)}·tan(x) )^{n}

No hay comentarios:

Publicar un comentario