E_{e}(r) = k_{e}q_{e}·( 1/r^{n} )
E_{g}(r) = (-1)·k_{g}q_{g}·( 1/r^{n} )
B_{e}(r) = (-1)·k_{e,m}q_{e}·( d_{t}[r]^{n}/r^{n} )
B_{g}(r) = k_{g,m}q_{g}·( d_{t}[r]^{n}/r^{n} )
divergencia y laplacià del camp eléctric y gravitatori:
d_{r}[ E_{e}(r) ] = (-n)·kq·(1/r^{n+1})
d_{rr}^{2}[ E_{e}(r) ] = (-n)((-n)+(-1))·kq·(1/r^{n+2})
d_{r}[ E_{g}(r) ] = (-1)·(-n)·kq·(1/r^{n+1})
d_{rr}^{2}[ E_{g}(r) ] = (-1)·(-n)((-n)+(-1))·kq·(1/r^{n+2})
divergencia y laplacià del camp magnétic:
d_{r}[ B_{e}(r) ] = (-1)·(-n)·kq·( d_{t}[r]^{n}/r^{n+1} )
d_{rr}^{2}[ B_{e}(r) ] = (-1)·(-n)((-n)+(-1))·kq·( d_{t}[r]^{n}/r^{n+2} )
d_{r}[ B_{g}(r) ] = (-n)·kq·( d_{t}[r]^{n}/r^{n+1} )
d_{rr}^{2}[ B_{g}(r) ] = (-n)((-n)+(-1))·kq·( d_{t}[r]^{n}/r^{n+2} )
ecuacions de camp del temps:
d_{t}[ d_{r}[ E_{e}(r) ] ] = d_{rr}^{2}[ E_{e}(r) ]·d_{t}[r]
d_{t}[ d_{r}[ B_{e}(r) ] ] = d_{rr}^{2}[ B_{e}(r) ]·d_{t}[r]
d_{t}[ d_{r}[ E_{g}(r) ] ] = d_{rr}^{2}[ E_{g}(r) ]·d_{t}[r]
d_{t}[ d_{r}[ B_{g}(r) ] ] = d_{rr}^{2}[ B_{g}(r) ]·d_{t}[r]
d_{t}[ d_{r}[ E_{e}(r)+B_{e}(r) ] ] = d_{rr}^{2}[ E_{e}(r)+B_{e}(r) ]·d_{t}[r]
d_{t}[ d_{r}[ E_{g}(r)+B_{g}(r) ] ] = d_{rr}^{2}[ E_{g}(r)+B_{g}(r) ]·d_{t}[r]
d_{tt}^{2}[r] = 0 <==> r(t) = (k_{e}/k_{e,m})^{(1/n)}·t
d_{tt}^{2}[r] = 0 <==> r(t) = (k_{g}/k_{g,m})^{(1/n)}·t
d_{t}[ d_{t}[ E_{e}(r)+B_{e}(r) ]·( 1/d_{t}[r] ) ] = d_{rr}^{2}[ E_{e}(r)+B_{e}(r) ]·d_{t}[r]
d_{tt}^{2}[ E_{e}(r)+B_{e}(r) ]·( 1/d_{t}[r] ) +...
... (-1)·d_{r}[ E_{e}(r)+B_{e}(r) ]·( d_{tt}^{2}[r]/d_{t}[r] ) =...
... d_{rr}^{2}[ E_{e}(r)+B_{e}(r) ]·d_{t}[r]
ecuacions de front de ones:
d_{tt}^{2}[ E_{e}(r)+B_{e}(r) ] = d_{rr}^{2}[ E_{e}(r)+B_{e}(r) ]·d_{t}[r]^{2}
d_{tt}^{2}[ E_{g}(r)+B_{g}(r) ] = d_{rr}^{2}[ E_{g}(r)+B_{g}(r) ]·d_{t}[r]^{2}
No hay comentarios:
Publicar un comentario