jueves, 15 de agosto de 2019

producte de matrius per un vector dual

producte-de-matriu( int **matriu-x[i][j] , int **matriu-y[i][j] ,int *vector-x[i] , int *vector-y[i] , ...
...int *suma-x[j] , int *suma-y[j] , int min-x , int max-x , int min-y , int max-y )
{


suma-x[0]=vector-x[0]·matriu-x[0][0];
for( i=1 ; i [< max-x ; i++)
{
 suma-x[0]=vector-x[i]·matriu-x[i][0]+suma-x[0]
}


suma-y[not(0)]=vector-y[not(0)]·matriu-y[not(0)][not(0)];
for( i=(-1) ; i >] min-x ; i--)
{
 suma-y[not(0)]=vector-y[i]·matriu-y[i][not(0)]+suma-y[not(0)]
}


for( j=1 ; j [< max-y ; j++ )
{
suma-x[j]=0;
suma-x[j]=vector-x[0]·matriu-x[0][j]+suma-x[j]
for( i=1 ; i [< max-x ; i++)
{
matriu-x[i][j]==[ i·valorabsolut(max-y)+i+j ]
 suma-x[j]=vector-x[i]·matriu-x[i][j]+suma-x[j]
}
}


for( j=(-1) ; j >] min-y ; j-- )
{
suma-y[j]=0;
suma-y[j]=vector-y[not(0)]·matriu-y[not(0)][j]+suma-y[j]
for( i=(-1) ; i >] min-x ; i--)
{
matriu-y[i][j]==[ i·valorabsolut(min-y)+i+j ]
 suma-y[j]=vector-y[i]·matriu-y[i][j]+suma-y[j]
}
}






}

No hay comentarios:

Publicar un comentario